
/_' , ,.
• /

206142

1/ "/_'7_'/

i t_ "b _t -c We.5,

FINAL REPORT

submitted to

NASA LEWIS RESEARCH CENTER

21000 Brookpark Road
Cleveland, Ohio 44135

for

Parallel Computation of Unsteady Flows
on a Network of Workstations

(NAG3-1577)

for the period of 1993-1997

_TRODUCTION

Parallel computation of unsteady flows requires significant computational resources. The
utilization of a network of workstations seems an efficient solution to the problem where

large problems can be treated at a reasonable cost. This approach requires the solution of

several problems:

.the partitioning and distribution of the problem over a network of workstation,

.efficient communication tools,

.managing the system efficiently for a given problem.

Of course, there is the question of the efficiency of any given numerical algorithm to such

a computing system.

NPARC code was chosen as a sample for the application. For the explicit version of the

NPARC code both two- and three-dimensional problems were studied. Again both steady

and unsteady problems were investigated. The issues studied as a part of the research

program were:
*how to distribute the data between the workstations,

*how to compute and how to communicate at each node efficiently,
*how to balance the load distribution.

In the following, a summary of these activities is presented. Details of the work have

been presented and published as referenced.

SUMMARY OF THE WORK PERFORMED"

A. Parallelization of the NPARC code:

PARC2D code was initially supplied by NASA Lewis Research Center for this study.

This code was parallelized, by using GPAR, on the LACE cluster at Lewis. This results

of this study was presented

in reference 1. A variable time-stepping algorithm was proposed This algorithm was first

tested for steady flows.

Later, a version of NPARC code was parallelized for both two and three-dimensions.

Variable time stepping was further implemented. These studies were reported in

references 2 and 3.

B. Load Balancing

A dynamic load balancing procedure was developed for supporting an heterogenous

cluster of work stations. NPARC code was used to test this capability for both steady and

unsteady computations. Variable time-stepping was incorporated to the load balancing

algorithm, such that each block and interface can choose their own time step as shown in

figure 1. Figure 2 shows the overall computational procedure.

Also, research was conducted for determining the communication cost for a workstation

cluster connected with Ethemet. Results of this research are summarized in references

4,5 and 6.

C. Filtering Techniques

To improve the efficiency of parallel algorithms, filtering techniques were developed. By

using these techniques the communication and computation cost of the given parallel

algorithm can be reduced significantly. The description of the methodology and obtained

results are summarized in references 7, 8, 9, and 10.

Processor 1 Processor 2

Block Solver Interface Solver

Block (1)

Atb(t)

Ati(1,2)

Interface (1) Interface (2)

Interface Solver Block Solver

Atib(2)

Atbi(2) 1
5

/

Block (2)

Atb(2)

Figure 1. Blocks and Interfaces

Lid

©

1

i NPARC

! GPAR

I
]

PVM

APPL!

©
r_

,°°°,°.°

©

(NPARC : '
2

I '
PVM /
APPL!

I

[PTRACK [PTRACK

New Distribution _2 !

Figure 2. Parallel Execution

lm

,

.

°

,

°

4

,

List of References

Akay, H.U., and Ecer, A., "Efficiency Considerations for Explicit CFD

Solvers on Parallel Computers," Proceedings of the International Work-

shop on Solution Techniques ,for Large-Scale CFD Problems, Montreal,

pp. 289-314, 1994.

Gopalaswamy, N., Chien, Y.P., Ecer, A., Akay, H.U., Blech, R.A, and

Cole, G.L., "An Investigation of Load Balancing Strategies for CFD

Applications on Parallel Computers," Parallel CFD '95, pp. 703-710,

Pasadena, 1995.

Gopalaswamy, N., Akay, H.U., Ecer, A., and Chien, Y.P., "Paralleliza-

tion and Dynamic Load Balancing of NPARC Codes," AL_A Paper

No. 96-3302, Lake Buena Vista, FL, July 1-3, 1996.

Ecer, A., Akay, H.U., Chien, Y.P., and Gopalaswamy, N., "Load Bal-

ancing Issues in Parallel Computing," Sixth International Symposium

on Computational Fluid Dynamics, Lake Tahoe, Nevada, September

4-8, 1995.

Secer, S., "Genetic Algorithms and Communication Cost Function for

Parallel CFD Problems," M.S. Thesis, Department of Electrical Engi-

neering, May 1997.

Chien, Y.P., Ecer, A., Akay, H.U., Carpenter, F., and Blech, R.A.,

"Dynamic Load Balancing on a Network of Workstations for Solving

Computational Fluid Dynamics Problems," Computer Methods in Ap-

plied Mechanics and Engineering, vol. 199, 1994, pp. 17-33.

Gopalaswamy, N., Ecer, A., A_kay, H. U., and Chien, Y.P., "Efficient

Parallel Communication Schemes for Explicit Solvers of NPARC Codes,"

AIAA Paper No. 97-0027, Reno, January 1997.

Ecer, A., Akay H.U., and Gopalaswamy, N., "Filtering Techniques in

Parallel Computing," Computational Sciences for the 21st Century,

Edited by J. Periaux et al., Tours, France, May 5-7, 1997.

9. Ecer, A., Gopalaswamy, N., Akay, H.U., and Chien, Y.P., "Digital

Filtering Techniques for Parallel Computation of Explicit Schemes,"

AIA.A Paper No. 98-0616, 36th Aerospace Sciences Meeting, Reno,

Nevada, January 12-15, 1998.

10. Gopalaswamy, N., "Parallel Computation of the Euler Equations,"

Ph.D. Thesis, Department of Mechanical Engineering, May 1998.

2

APPENDIX: Copies of selected references.

Solution Techniques for Large-scale
CFD Problems

Edited by

Wagdi G. Habashi

Professor, Concordia University
Director-Industry, CERCA
Aerodynamics Consultant, Pratt _ Whitney, Montreal, Canada

JOHN Vv-ILEY & SONS

Chichester• New York •Brisbane• Toronto •Singapore

EFFICIENCY CONSIDERATIONS FOR EXPLICIT CFD

SOLVERS ON PARALLEL COMPUTERS

H.U. AKA Y and A. ECER

A parallel algorithm, based on subdividing the flow field into several subdomains and distributing
each subdomain onto available computers, is presented for the solution of Euler equations on
workstation clusters. Each block is treated as a different process in available computers on the network
and the load distribution is dynamically balanced. Machine independence is achieved by combining the
flow code with a general CFI) data base and a machine portable library. Strategies are explored for
integrating the unsteady flow equations explicitly in time by taking advantage of the local flow
conditions and the grid point distribution in each block.

1. INTRODUCTION

Solution of large-scale CFD problems requires, and will continue to require, computer resources

beyond those readily available. Memory and CPU requirements are still the key factors affecting

the progress in this area. Whether it is an implicit or explicit scheme, efficiency still remains a

major problem. Recently. considerable effort has been directed towards modifying algorithms for

efficiency and significant progress has been made in vectorizing and parallelizing these algorithms.

Our earlier work on parallel computations of CFD has led to the development of a CFD data
base program, GPAR 1, which manages computational grids. GPAR utilizes a machine portable

library, APPL 2, for implementations on different distributed memory systems. Using the GPAR

prom'am, together with APPL, we were able to parallelize a number of flow codes 3.4. In addition

to using machines with specific parallel architectures, we have explored the use of clusters of

workstations for parallel computations. For cases where the number of solution blocks are greater
than the number of workstations, multi-processing is exercised in machines containing multiple

blocks. For such cases, we have also incorporated load balancing algonthms 5.6.

The following factors affect efficiency in parallel computing:

• Ease in prograrmzting
• Ease in portabiliw and scalability

• Ability to use heterogeneous systems

• Ease in load balancing

• Speed-up and scaiability

In this chapter, we present an explicit solution strategy for the solution of CFD problems,
which can readily be used on a network of heterogeneous workstations. We discuss the issues

related to the implementation of this scheme.

2. EULER EQUATIONS

2. I Formulation

A finite element discretization of the compressible Euler equations can be formulated by adding

two diffusion operators as follows:

N

H.U. AKAY andA.ECER

o3t o3x_
(1)

where U is the vector of conservation variables and F i are flux vectors defined as

pul

u:/p,,q
/pu,/
LnEJ

pui

PUlU i + p¢51i

pu2u i + p(52i

PU3Ui + P83i

(pe +

(2)

Also,

_Fi (3)
' =Tg

are the Jacobian matrices corresponding to flux vectors Fi, p is the density, ui the velocity

components, and E is the total specific energy. The static pressure p is calculated from the

equation of state:

(4)

where Z is the ratio of specific heats.
The third and fourth terms in Eq. 1 were introduced to stabilize the equations by adding artificial

diffusion 7-I0. Here, ¢z is the streamwise diffusion coefficient for upwinding of the flux vectors

F, and e is an additional diffusion coefficient added in all directions, which can be computed from
local flow conditions and mesh characteristics as follows:

(x = Cl_- e = c2r + c_)_'Y q a-&i[

where

= he q= = q+a (6)

In the above equations, h_ and _'_ represent the element characteristic lengths and velocity

components, res__.__tively, in the direclion of the natural coordinates _i of an isoparametric finite
element, a = _/yp/p is the speed of sound, and ci are user-specified constants used to control non-

physical oscillations of the numerical scheme. For most subsonic and transonic flows, we use

c I = 1.0, c 2 = 0.15- 0.5 and c 3 = 1.0 - 2.0.

EFFICIENCY CONSIDERATIONS FOR EXPLICIT PARALLEL CFD SOLVERS

2.2 Finite Element Discretization in Space

Using a weighting function vector W(x i), the weighted residual form of Eq. 1 is expressed as
follows

cret, j-<_x,t, Ox,)J
"-0

o_xi
(7)

and by applying the Green-Gauss theorem on the last two terms of Eq. 7, a weak variational form
is obtained

Jo. -5;- tOx,J + t Jt Jj dO - !r" W . H,n i dF = 0(8)

where

Gi=Ai_xj and Hi= aAi-_xj +8-.-_x i
(9, IO)

.f2e is the element area, n i are the directional cosines of the outward normal vector on the element

boundaries F e, and H i are the boundary flux vectors resulting from diffusion operators. We

introduce the following interpolations to each conservation variable 0, as follows

(11)

where N 1 are the spatial element interpolation functions, _ are the nodal point values of the
conservation variable _ in an element e. Equal-order linear interpolations are used for all

variables. After using the same interpolation functions as weighting functions, we obtain the

following decoupled system of ordinary differential equations for each conservation variable

where

(12)

(13)

': Ilv;lvjM_

.o'

(14)

O' F'

(15)

J

H.U. AKAY and A. ECER

Fj, Gk and" H k are calculated for each conservation variable ¢) using Eqs. 2, 9 and I0,

respectively. The term Gk in Eq. 15 may also be replaced with uk _b_/,gx./, where uk is the local
flow velocity vector, eliminating the need to calculate the inner product involving the lacobian

matrix in Eq. 10. Although this provides more efficient results for transonic problems with
subsonic inflows and moderately high Mach numbers, it does not appear to provide enough

stability at high supersonic speeds 4.

2.3 Boundary Conditions

Inflow and outflow boundaries are treated differently using the characteristic boundary method based

on whether the local flow conditions are subsonic or supersonic 11. For subsonic inflow boundaries

with known Mach number conditions, Riemann variables are used together with the values

extrapolated from the interior elements closest to the boundary. Similarly, for subsonic outflows,

the exit static pressure is specified together with the values extrapolated from the closest interior

elements. For supersonic inflows, all values of the conservation variables are fixed. For supersonic

outflows, values of conservation variables are extrapolated from the nearest interior elements. A

zero normal mass flux boundary condition Puin i = 0 is imposed on solid boundaries.

2.4 Time-Integration of the Equations

Assembly of the element equations leads to the following system of equations for each of the
conservation variables

Miy _j =_ (163

Using forward-differencing in time, the time derivative of ¢ is expressed as

where n denotes a time step and At n is the time increment at time step n. Substituting the above

into Eq. 16, we devise the following explicit scheme to calculate the solution at n + 1 :

(18)

D

where Mij is the global matrix assembled from a lumped matrix approximation of Mij in Eq. 14.
Due to the explicit nature of the scheme in Eq. 18, the element Courant number limitation

At< Cmin{1/[(_ +a)/h_]} (19)

must hold in each element for stability of the numerical integration 12, where _'_ is the local flow

speed, a is the speed of sound, he is the element length in the local _ directaon, and C is a
constant less than unity.

For steady-state problems, the residual norm of each conservation variable, _ = {p, pu i, pE},

EFFICIE',JCY CONSIDERATIONS FOR EXPLICIT PARALLEL CFD SOLVERS ?

is used for monitoring the convergence to steady-state and is calculated at each time step n as

noat_r _,,+i]2] i/2(.;)o.. --"'o. -¢: (20)

R/1
Steady-state is considered reached when (#,)avg < 10"6"

3. PARALLEL COMPUTING ENVIRONMENT AND EXPLICIT SOLVERS

Solution of the Euler equations by both implicit and explicit methods has been greatly studied for

steady and unsteady flows. In this chapter, the emphasis is on the parallel implementation of

explicit solvers. In comparing parallelization of explicit and implicit schemes, one can make the

following observations:

• Explicit solvers are easier to parallelize since the data to be organized on a parallel computer

is simpler.

• The ratio of communication versus computational cost is higher for explicit schemes,

which reduces the efficiency of parallelization.

Also, for explicit solvers, scalability becomes more crucial due to the relauve importance of the

communication costs. In the following, specific parallelization issues are discussed as applied to
the scheme described above.

For the numerical integration of a system in the form d_/dt = f(¢, t), parallelization requires
distribution of the data over a number of processors. For an explicit solver, the calculation of

f(O, t) can be localized on a processor quite easily. In the present application, we assign elements

to blocks, and blocks to processors. Parallel implementation of the algorithm involves the

following steps:
• The computational grid is divided into a number of blocks equal to or greater than the

number of available computers, with one layer of elements overlapped at inter-block

boundaries as shown in Fig. 1.

• The block and interface information is incorporated into the data base, which is distributed
to different machines.

• Eq. 18 is solved inside a block solver on each processor locally.

• The inter-block information is transferred to an interface solver which also manages the

communication between neighboring blocks.

• The problem is load balanced dynamically for a given system of processors.

The flow chart of the parallel CFD algorithm is shown in Fig. 2. The first step is to define the
grid in terms of blocks and interfaces. The assembly of grid points and their connectivities are

defined for each block and interface. The data base program, GPA1L manages such block-based data

and distributes it to the appropriate processors. Blocks are divided among the available processors

and interfaces attached to each block are also stored on that processor. Since each interface is

attached to two blocks, they appear in two processors and are prepared to communicate with each

other. The same basic solution algorithm is used in all blocks which is defined as a block solver.

The interface solver transfers data from each block to its interfaces, performs necessary

computations on interface nodes and communicates the results back to the corresponding blocks. In

return, the interfaces update the neighboring blocks as shown in Fig. 3. The interface solver

performs all necessary, communications with relatively small amount of computations. The data

base management program GPAR supports block and interface solvers in terms of propagating the
data as soon as they are computed by the block solvers. The block data are communicated to the

H.U. AKAY and A. ECER

interfaces which inform their duplicates on other processors. The interfaces then update the:

blocks. The user does not have to employ any machine-specific send or receive commands. Insteac

the basic message passing commands of GPAR are issued in the interface solver for managing th,

interface data. Although APPL was used as the parallel message passing library for thi

implementation, the use of other message passing libraries such as PVM 13 is also possible.

Block _ Block _ Block

Interfaces

FIGURE I: Blocks and interfaces.

Block Solv_ forp. pu, pv, low, pE

r
I Inte_ce Solvez Earp, p_ pv, pw, pE

I

No

Save Solution

L
Advance in 'l-3.me

FIGURE 2: Flow chart of the parallel CFD code.

EFHCIE',;CY CONSIDERATIONS FOR L-XPLICIT PARALLEL CFD SOLVERS

Processor I Processor 2

_B

FIGURE 3: Communication between blocks and interfaces

(g2 A and g'2B are blocks, TAB and FBA are interfaces).

In the present application, a block is defined as an entity in the data base consisting an
assembly of finite elements. After the unsteadiness dqJ/dt is calculated locally in each block, one

has to communicate between the processors to propagate these changes. At the end of the

calculation of the d_/dt vector at each node in each block, the interfaces are automatically updated

by the interface solver.
Steps of an explicit parallel scheme can then be outlined as follows:

• Initialize the data base.

• Do for each time step:

• Do for each block:

• Integrate the equations for the nodes in that block.

• Do for each interface:
• Gather information from the neighboring blocks to update the flow variables for the

nodes on that interface and send this information to the neighboring blocks.

Although the above particular scheme seems straightforward, there are several decisions to be
made. These are related to the problem to be solved and the computer system to be utilized. In

terms of solving a specific flow problem let us consider the flow around an airfoil. When one
generates a computational grid, certain regions are refined to account for the details of the flow

field. A uniformly refined grid increases the computational cost exponentially, especially for three-

dimensional problems. Different levels of grid refinement also suggest different choice of time

steps for stability requirements of the explicit scheme. If we compute with an explicit scheme by

using a constant time step for the entire grid, based on the stability requirements around the leading

edge of the airfoil, the scheme becomes quite expensive. Also, when considering the flow field in

different regions, one can observe that time step requirements can be different in terms of the

accuracy of the solution. The above discussion suggests that running an explicit algorithm on an

equally spaced grid with a constant time step is not a preferred solution. In a parallel computation

of such flow problems, one should consider the refinement of block grids differently to represent
the local flow conditions properly and perform the computations in a selective manner.

Another issue is the availability of hardware. In parallel computing, one can start with the

assumption that blocks will utilize similar computer resources which are readily available. The

correct problem should be stated as solving a given problem on a given computer system most

10 H.U.AKAY and A. _

efficiently. Furthermore, a pomon of a specific computer system may be available to a specific
user on a given day and the computer system may be upgraded periodically. One would like to use
all available computer resources in a most efficient manner in such an hardware environment when

running a parallel code, in contrast to running on a single processor.

The use of an efficient data base management system is also critical in utilizing the available

computer resources. By using the above described system one can utilize any given computer
system Supported by the message passing library, including heterogeneous systems. However, one

of the important features of parallel computers is the dynamic nature of available resources. One

would like to run the algorithm on a given machine efficiently without requiring an excessive

amount of computer time. For this purpose, a dynamic load balancing capability was developed 6

Based on an initial distribution of the blocks on available processors, the cost data is gathered in

terms of communication and computation for each block and interface. Better distribution of blocks

on available processors is then determined as more data is collected during these computations.

This algorithm can be periodically used to improve load balancing to account for changing loading
conditions of the individual processors in a given computer system. The interaction of the CFD

code with GPAR, APPL and the load balancing program is shown in Fig. 4.

Load Balancer

i APPLPortableParallelLibraryto
supl:ortdifferentcomputers

GPAR

Dam basemanagerfora
given computational grid

1
CFD Code

Solvesflowequa_onsofa
blockinaprocessor

FIGURE 4: Relationship between different parallel tools and a CFD application code.

4. EFFICIENCY CONSIDERATIONS FOR PARALLEL COMPUTATIONS

4.1 Load Balancing

As discussed above, dynamic load balancing capability is a critical factor in improving the

efficiency of parallel computations. While running parallel jobs by,subdividing the solution
domain into several blocks on loosely-coupled systems such as networ[ced workstations, one is
faced with the following situations:

• The computational grid may be divided into many solution blocks with varying sizes,

EFFICIENCYCONSIDEP,.-_TIONSFOREXPLICITPARALLELCFDSOLVERS 11

• A processis assignedtoeachblockandtheremaybemorethanoneprocessoneach
processor,

• The available multi-user and multi-tasking networked processors may have different

computational speeds and memory,
• The load of each processor may vary due to initialization or termination of processes of

other users.

One way of achieving load balancing between the processors is to distribute an equal load, or
number of solution blocks, to available processors. This may require some effort in subdividing

the computational grid into a number of blocks several times greater than the number of
processors, which can be done at the initiation of execution 5. In the development of this strategy,

it was originally assumed that the processes would be executed synchronously. During the

numerical integration of the equations, each block (or process) was synchronized at each time
step 3. This results in certain restrictions to the load balancing. Here, we consider a solution

strategy which exploits networked workstation environments in which each processor can handle

multiple tasks and their loads may vary considerably. In addition, for multi-user environments

considered here, computer loads can change dynamically since other users may start new processes

an.vtime. Consequently, the effective computational speed of a computer may change dynamically
during the duration of parallel computations which may increase the elapsed time of computations.

This situation is improved by the dynamic load balancing algorithm 6. By checking the status of

processors during the time-integration of a problem, the loads are redistributed to available

machines as unbalanced loading conditions are detected.

4.2 Variable Time-Stepping - Stead)' and Unsteady' Flows

Parallelization of explicit schemes is a rather straightforward task when the domain is subdivided
into several solution blocks. It has been demonstrated that for well balanced cases it is possible to
reach efficiencies of 75% or more, with 20 or more machines 3. However, due to the Courant

number resmction on the time increment, the solution of large size problems is prohibitive, even

after parallelization. One has to consider more adapted schemes rather than performing similar

computations on all machines. Due to the Courant number restriction in Eq. 19, the time
increment At is directly proportional to element size and inversely proportional to local speed.
Hence, At becomes most restrictive in regions with high flow speeds and denser grid points.

Shown in Fig. 5 is the scheme used in exchanging interface data between blocks with spatially

constant time steps for all blocks. In this case, the interface data is sent to neighbors at each time

step with all blocks having the same time increment. One remedy for steady flow problems is to

use spatially variable time-stepping. On the other hand, drasticspatial variations in At delay the

convergence. Hence, it is more appropriate to subdivide the domain into regions with different At
in each. In such cases, we have found that one does not have to march in time with the same speed

in all the blocks. Of course, for unsteady flows, a time accurate solution of interfaces is necessary.

The block-based parallel approach adopted here makes the variation of At in time and space both
for steady and unsteady problems quite convenient.

12 H.U.AKAYandA.ECER

t

Block I

t

u m

m

Block 2

FIGURE 5: Exchange of interface data in spatially constant time-stepping scheme.

For a flow domain subdivided into solution blocks for parallelization as implemented here, we

propose to select a local time step for each block as multiple of a minimum preset value Atmi n .

For each nth time step and ruth block we determine

tn < c min{1/[('ff +a)/h_]} (21)

and choose the actual time-step for each block as

,:_'_ = k _,,,.m -<at,_ (22)

where k is an integer. An upper limit on k is needed (e.g., 5) to minimize extrapolation errors.

This way, each block may advance with different time increments. For impulsively started flows.

it is safer to initially advance all blocks with a constant time step until the solution starts

developing. A similar technique was introduced by Lt_hner et al.14 in conjunction with a domaJn

splitting technique on serial machines.
In the case of unsteady flows, a block, advancing with a smaller time step than one of its

neighbors, can calculate its own interface conditions by extrapolation from the previously received

interface data While blocks with smaller time steps are solved more frequently, the blocks with

larger time steps will be solved less frequently, thus using the resources (available machines) less.

In addition, there will be less interchange of interface data as shown in Fig. 6. Since the Courant

number limitation is usually small enough for time accuracy too, there is no appreciable danger in

loss of accuracy because of extrapolations.
For steady flows, there may not be any need for using the extrapolated interface data, since it is

not necessary to maintain time accuracy between blocks. Hence, the time increments of blocks can

be determined directly from Eq. 21 without having to use the constraint in Eq. 22. In this case, the

latest available interface results from the neighboring blocks are employed as shown in Fig. 7.

EFFICIENICY CONSIDERATIONS FOR EXPLICIT PARALLEL CFD SOLVERS 13

T

Blo¢.kI

,91-

T

--_p,
Block 2

FIGURE 6: Exchange of data m spatially variable time-stepping scheme for unsteady flows.

At 1

..__. __

Block 1

41P

Block 2

--t-

__/._

FIGURE 7: Exchange of data in spatially variable time-stepping scheme for steady flows.

4.3 Local Residual Criterion for Steady Flows

For steady flow problems, the residuals in each block often reach sufficiendy small values at

different times, indicating local convergence to a steady state. Hence, depending on the local flow

conditions, the solution of a block may be stopped as soon as convergence is detected in that

block. This way, additional efficiency can be obtained by minimizing the utilization of the

available computer resources without sacrificing accuracy. It will be shown that for fully

supersonic blocks, convergence of the blocks can be obtained sequentially. For subsonic and

transonic blocks, after the convergence of the blocks is obtained, it is necessary to restart the

solution in all the blocks to check the global convergence to a steady-state solution. Such savings

may be substantial in large-scale problems with varying local flow and grid characteristics.

5. NUMERICAL RESULTS

In this section, we present numerical examples demonstrating applications of the algorithms

discussed above. All computations were done on a network of IBM RS-6000/540 workstations.

14 H.U. AKAY and A. ECER

5. I Parallel Performance E.r.ample

To illustrate the parallel performance of the algorithm, transonic flow around a NACA0012 airfoil
was considered 4. A C-grid with 304 K grid points and 20 blocks was employed. The topology of

solution blocks is shown in Fig. 8. The CPU and elapsed times of 5, I0 and 20 block

subdivisions of this problem are summarized in Fig. 9. Elapsed to CPU time ratios of 1.4, 1.9 and

2.3 were measured for cases with 5, 10 and 20 machines. Differences between the elapsed and CPU

times are attributed to communication loads and delays, and the presence of other processors or

users on the machines. As may be observed, the difference between the CPU and elapsed time gets

larger as the number of processors increases, indicating that larger block sizes yield more

efficiency. These results were obtained by static distribution of the loads over computers with a

single user and a constant time step was used in all blocks.

18

17

20

19

I

2

FIGURE 8: Block topology for parallel performance example.

Q
10-

s-:I

4-

O:

CPU Time

T

Elapsed Time

[_ 5 Machines

[] I0 Machines

[] 20 Machines

FIGURE 9: Performance of the algorithm for a grid of 304,000 points and 20 solution blocks.

EFFICIENCY CONSIDERATIONS FOR EXPLICIT PARALLEL CFD SOLVERS 15

5. 2 Load Balancing Example

In this case, a NACA0012 airfoil with 65 K grid points was analyzed by distributing 30 blocks on

5 computers 6. Initially six blocks were assigned to each computer. There were also other users on

these processors. As it is shown in Fig. 10, the load balancer checks the status of computers every

n number of steps. When it detects unbalances due to appearance of extraneous processes on the

system, it redistributes the loads accordingly. As may be observed, the algorithm provides a better

performance by periodically checking the loads on the computers and redistributing the loads. The

dashed line in Fig. 10 indicates the elapsed time estimated by the balancer, while the solid line

denotes the actual measured time. The estimate of the elapsed time is made from the size of blocks

and interfaces of a given computational grid.

_30 -

¢D
.. 25

b-, .-o

._.qS 20
_r.J3

_ 15

r.D _-,
_a2

exo _--4 10
t_ r.-,
_., Q)

-< 5

0

Even Dist.
No Other
Processes

30tlmr
ProcesAc_

Appenr on

Compul.c r I I .otld

Balanced22%
Faster

L

5 Morc on

Computer 3

Load

llah.lced

24%

Faster

_Experimental Time

..... Simulation Time

0 1 2 3 4 5 6

Number of n Iterations

FIGURE 10: Timing results of the dynamic load balancing ease.

j_

16 H.U.AKAY andA.ECER

5.3 Example o/Variable Time-Stepping for Steady Flows

To illustrate applications of the block-based variable time-stepping algorithm discussed above, we

have selected a converging-diverging channel geometry with a computational grid of 50XI0
elements shown in Fig. lla. The channel has an inlet to throat area ratio of 2.5, exit to throat area

ratio of 1.5 and total length to throat height ratio of 20. For the purpose of demonstrating the ideas

presented, a four-block subdivision of the channel was considered as shown in Fig. I lb. Since the

steady-state was of interest, the equations in each block were integrated by using locally determined
time steps from Eq. 21 in each block until the average residuals in each block reduced below 10 -.6 .
Five distinct flow regimes were considered.

(a) Computational grid.

(b) Block and interface topology.

FIGURE 11: Computational grid and a four-block subdivision of the converging-diverging
channel test case.

5.3.1 Subsonic flow For a uniform inlet Mach number of 0.24 at the inlet and an exit to inlet

pressure ratio of 0.9136, the flow remains completely subsonic throughout the channel as may be

seen in Fig. 12. The number of time steps required for each block to reach a steady-state solution
is summarized in Fig. 13. As it can be observed, due to the subsonic nature of the flow conditions,

all blocks reach the steady state at about the same number of steps. As it will be seen from the

results of the other cases, this case required the highest number of steps for convergence.

EFFICIENCY CONSIDERATIONS FOR EXPLICIT PARALLEL CFD SOLVERS 17

1.4-

L

_M(lower)

-- -- -M(upper)

0 0.2 0.4 0.6 0.8 1

x/L

FIGURE 12: Computed Mach number distr:bution along

lower and upper surfaces of the channel for the subsonic flow case.

I0C00-

9000-

80C0'

7000-

E

O.
1 2 3 4

Block Nun:_:,,er

FIGURE 13: Convergence of each block to stead.',' state for the subsonic flow case.

5.3.2 Transonic flow with subsonic inlet and exit To create a shock in the downstream of the

channel, a uniform inlet Mach number of 0.24 and an exit to inlet pressure ratio of 0.8435 were

applied as inflow and outflow boundary conditions, respectively. Shown in Fig. 14 is the variation

of Mach number along the upper and lower surfaces of the channel. The number of time steps

needed for each block to reach a steady-state solution is summarized in Fig 15. As may be seen,

the f'u'st two blocks converged to the steady state earlier than the last two blocks. Compared to the

single block solution of the problem, it was seen that about 15% less computation was needed.

Fig. 16 illustrates the effect of using variable zat at each grid point versus using a different _t in

each block. While the grid point based variations of zlt yield oscillatory residuals and slow the

convergence rate, the block-based At variations perform better.

18 H.U.AKAYandA.ECER

1.5

i 1
o.s

-- -- -M(apper)

o
0 0.2 0.4 0.6 0.8 1

x_

FIGURE 14: Computed Mach number distribution along lower and upper surfaces of the channel

for the transonic flow case with subsonic inlet and exit.

I0(_0-

7ooo_

an 60_0-

3OOO

20OO

_000-

O-
t 2 I ¢

Block Namb_

FIGURE 15: Convergence of each block to steady-state
for the transonic flow case with subsonic inlet and exit.

.°°

..... .,,,.,__ '\ .,-,,.. x.,,
,, ,,,a,.,,_,. --"_ "" _'x.

\.
\.

S_

FIGURE 16: Effect of different spatial variations of At.

I

EFFICIENCY CONSIDERATIONS FOR EXPLICIT PARALLEL CF'D SOLVERS 19

5.3.3 Transonic flow with subsonic inlet and supersonic exit For an inlet Mach number of 0.24,

the exit conditions were left free yielding a supersonic exit. Shown in Fig. 17 is the Mach number

variation along the upper and lower wall surfaces. The corresponding convergence requirements of

this problem are shown in Fig. 18. As may be observed, all blocks reach the steady-state after

almost the same number of time steps. The maximum number of steps required for convergence

was considerably less than in the two previous cases.

2.5

i 1.5

o.5
j -- -- -M(upper}

I

0 0.2, 0.4 0.6 0.8 1

x/L

FIGURE 17: Computed Mach number distribution along lower and upper surfaces of the channel

for the transonic flow case with subsonic inlet and supersonic exit.

1 2 3 4
Block Number

FIGURE 18: Convergence of each block to steady-state for the transonic flow case

with subsonic inlet and supersonic exit.

2O H.U. AKAY _1 A. ECER

5.3.4 Supersonic flow with supersonic inlet and exit In this case, the inlet Mach number was s

to 2.65 and the exit was left free. The Mach number variation along the upper and lower wa

surfaces is given in Fig. 19. The corresponding convergence requirements of thisproblem ar

shown in Fig. 20. Itisobserved thatblock I reaches the steady statemuch earlierthan the other

By stopping the solution of blocks reaching the residualcriterionof 10 -d, about 30% savings

computations were reached. Among the five cases considered here, thiscase required the lea

number of steps to reach the steady-stare.

2.5

2 -\

1

0.5 -- - -M(upp_')

o

0 0.2 0.4 0.6 0.8 I

x/L

FIGURE 19: Computed Mach number distributionalong lower and upper surfacesof the channel

for thesupersonicflow case with supersonicinletand exit.

,t
r_

10000.

80(_.

70GO.

5000-

4000-

I 2 3 •
B_kN_

FIGURE 20: Convergence of each block to steady-state for the supersonic flow

case with supersonic inlet and exit.

EFFICIENCYCONSIDERATIONSFOREXPLICITPARALLELCFDSOLVERS 21

5.3.5 Transonic flow with supersonic inlet and subsonic exit In this case, the inlet Mach number

was set to 2.65 and the back-pressure was specified to yield an exit to inlet pressure ratio of 13.72.

The Mach number variation along the upper and lower wall surfaces is given in Fig. 21. The

corresponding convergence requirements of this problem are shown in Fig. 22. As may be

observed, blocks 1 and 2 reach steady state much earlier than the other blocks. By stopping the

solutions in blocks 1 and 2 at earlier stages, a 40% efficiency was achieved. As shown in Fig. 23,

the savings are even more substantial when a mesh of 120, 000 grid points and 20 blocks is used

for the solution of a similar problem.

9

2.5

1.5

0.5

i

m

_M(Iower)

-- -- -M(upper)

0 0.2 0.4 0.6 0.8 1

x/L

FIGURE 21: Computed Mach number distribution along lower and upper surfaces of the channel

for the transonic flow case with supersonic inlet and subsonic exit.

10000.

9O0O

8000

7000¸

11 r_OO

. r,ooo

:L JZ1

1 2 B 4
Block N_a/_"

FIGURE 22: Convergence of each block to steady-state for the transonic flow case

with supersonic inlet and subsonic exit.

22 H.U.AKAY andA.ECER

20000.

15000.
Q

10000.

5000-

I 2 3 4 5 6 7 8 91011121314151617181820

Block Number

FIGURE 23:Convergenceofeachblocktostcady-statcfora mesh of 12.000

gridpointsand 20 blocks.

5.4 Example of Variable Time-Stepping for Unsteady Flows

For illustration of the variable time-stepping algorithm in unsteady flows, we have selected the

same channel geometry of Example 3 and considered a sinusoidal variation of the exit pressure of
Case 5 in the form:

p(t) = Po + O'04 po sinai (23)

where co is the frequency of oscillations. This corresponds to J:4 % variations in back-pressure Po

of the case in section 5.3.5. The results of the case with a frequency of 0.02 rad/s are summarized
in Fig. 24. As may be observed, 1:4 % variations in downstream pressure changes the shock

location significantly, while the supersonic region from inlet to throat remains undisturbed. Since

in such unsteady problems it is necessary to maintain the time-accuracy of the solutions, the

constraint in Eq. 22 was used together with Eq. 21 for the selection of time increments in each
block.

For the purpose of studying the efficiency of the variable time-stepping algorithm, we have
also considered two additional grids:

Grid 1:10,800 grid points, 5 blocks, 5 machines.

Grid 2:200,000 grid points, 20 blocks, 5 machines.

Blocks of nearly equal sizes were distributed to 5 machines. By using the algorithm described in
Section 4.2, for a block advancing with a smaller time step than its neighbors, the boundary

conditions were determined from the interface data by linear extrapolations in time (Fig. 6). The

EFFICIE'qCyCONSIDERATIONSFOREXPLICITPARALLELCFDSOLVERS 23

a

3

2.5

1.5

0.5

FIGURE 24: Computed Mach number distribution along the lower surface
of the channel for unsteady variations of back-pressure (at t = l[Sth period positions).

CPU and elapsed times were obtained for 5000 steps of the constant time-stepping option. Shown

in Fig. 25 are the comparisons of CPU and elapsed times of constant and variable time-stepping

algorithms for Grid I. Although, the elapsed times of the variable time-stepping scheme are about

20% of the constant time-stepping scheme, the elapsed times are approximately twice the CPU

times. This is attributed to the significance of communication times compared to block solver

times in small size grids in each machine. The corresponding results for the larger case (Grid 2)

are given in Fig. 26. As may be seen, since the block sizes are larger, the differences between CPU

and elapsed times are insignificant, indicating that the communication times are negligible

compared to the computations performed in the block solvers. The elapsed times of the variable

time-stepping scheme are about 20% of the constant time-stepping scheme in this case too.

24 H.U.AKAYandA.EL-"ER

1800-

,-.].6O0-

1,oo!

 soo.

1 2 3 4 5
Machine Number

• Constant (CPU)

[] Constant (Elatmmd)

Variable(CPU)

[] Variable(Elal_ed)

EXAMPLE 25: Unsteady problem: time comparisons between constant and variable rime-stepping

algorithms (10, 800 grid points).

16000-

14O00

_ 12000

1 2 3 4 5
Machine Number

[] Co_t (CPU)

[] Constant (Elapsed)

[] Variable(CPLr)

_}I Variable(Elapsed)

FIGURE 26: Unsteady problem: time comparisons between constant and variable time-stepping

algorithms (200, 000 grid points).

EFT-7CIENCY CONSIDERATIONS FOR EXPLICIT PARALLEL CFD SOI.",'ERS

6. CONCLUSIONS

In this chapter, we have summarized some of the considerations involved in solving large CFD

problems on network of workstations using explicit solution algorithms. Specifically, the issues

concerning load balancing, efficiency and time increment restrictions are addressed. The domain

partitioning approach used here allows:

• Ease in programming and data base management.

• Flexibility in load balancing.

• Control in the implementation of block-based variable time-stepping.

One can observe that the combination of dynamic load balancing and variable time-stepping

schemes can be a powerful tool in compuUng unsteady flows. Work is in progress in extending the

variable time-stepping algorithm to unsteady external flows, where the benefits may be more

pronounced due to the nature of the variations in local flow conditions and grid spacing.

REFERENCES

1. Akay, H.U., Blech, R.A., Ecer, A., Ercoskun, D., Kemle, W.B., Quealy, A. and Williams, A. (1993),

A Database Management System for Parallel Processing of CFD Algorithms, Proceedings of Parallel

Computational Fluid Dynamics '92, R.B. Pelz et al. (eds.), North-Holland, 9-23.

2. Quealy, A., Cole, G.L'. and Blech, R.A. (1993), Portable Programming on Parallel Networked

Computers Using the Application Portable Parallel Library (APPL), NASA TM 106238, Lewis

Research Center, Cleveland, Ohio, USA.

3. Ecer, A., Akay, H.U., Kemle, W.B., Wang, H., Ercoskun, D. and Hall, E.J. (1994.), Parallel

Computation of Fluid Dynamics Problems, Computer Methods in Applied Mechanics and

Engineering, 112, 91-108.
4. Akay, H.U. and Ecer, A. (199-I), Parallel Computation of Unsteady Flows on Network of

Workstations, Proceedings of the 2nd Japan-US Symposium on Finite Element Methods in Large-

Scale Computational Fluid Dynamics, Tokyo, Japan, 63-66.
5. Chien, Y.P., Carpenter, F., Ecer, A. and Akay, H.U. (1993), Computer Load Balancing for Parallel

Computation of Fluid Dynarmcs Problems, Proceedings of Parallel Computational Fluid Dynamics

'93, North Holland.

6. Chien. Y.P., Ecer, A., Akay, H.U. and Carpenter, F. (1994), Dynamic Load Balancing on a Network
of Workstations for Solving Computational Fluid Dynamics Problems, Computer Methods in

Applied Mechanics and Engcneenn_ (in print).
7. Hughes, T.J.R. and TezOuyar, T.F_,. (1984), Finite Element Computation of Compressible Flows with

the SUPG Formulation, Computer Methods in Applied Mechanics and Engineering, 45, 217-28,1..

8. LeBeau, G.J., Ray, S.E., Aliabadi, S.K. and Tezduyar, T.E. (1992), SUPG Finite Element

Computation of Compressible Flows with the Entropy and Conservation Variables Formulations,
Universitw of Minnesota Supercomputer Institute Research Report 92/96.

9. Donea, Ji (198o,), A Taylor-Galerkin Method for Convective Transport Problems, International

Journal for Numerical Methods in Engineering, 211, 101-120.

10. L_hner, R., Morgan, K. and Zienkiewicz, O.C. (1980,), The Solution of Non-Linear Hyperbolic

Equation Systems by the Finite Element Method, International Journal .for Numerical Methods in

Fluids, 4, 1043-1063.
1 1. Hirsch, Ch. (1990), Numerical Computation of Internal and External Flows, Volume 2, John Wiley

& Sons.

1 2. Roache, P.J. (1976), Computational Fluid Dynamics, Hermosa Publishers, Albuquerque, New

Mexico.

13. Geist, G.A. and Sunderam, V.S. (1992), Network-Based Concurrent Computing on the PVM System,

Concurrency: Practice and Experience, 0,(0,), 293-311.
14. L0hner, R., Morgan, K. and Zienkiewicz, O.C. (1984), The Use of Domain Splitting with an

Explicit Hyperbolic Solver, Computer Methods in Applied Mechanics and Engineering, 45, 313-
329.

i

Para3_lel CFD '95, June 26-29, 1995, Pasadena, California

An investigation of load balancing strategies tbr CFD applications on

parallel computers

Got:ataswamv, , , Y.? Chien _..4.. Ecer _. H.U. ,4kay, R.A. BIeclt _ and G.L. Cole _

_P,_due School of Engineering and Technol%_y, rL?UI, Ladianapolis. Indiana

_Com:umtional Tec,hnologies Branch. NA.SA Lewis Research Center, Cleveland. Ohio

1. INTRODUCTION

As @.e "J,se of paralle[computers is becomIng more popular, more attention is __iven to

manage such systems more e,_cienttv, in this paper, several issues related :o ",.he _robiem

of load balancing for the solution of parallel CFD problems are discussed. -Foe load

balancm_ problem is stated in a at fashion for a network of heterogeneous, multi-
4 _,-,user cam_uters without defir,,in___ a s_ecific system. The CFD problem is ,.,e,z,,ed in a

muiti-:_-iock fashion where each of the data bloc_ can be of a different size md the

b[ocl_ =e cormec:ed :o each other in an,, arbitrary form. A process is at'ached :o each

block where di_qrent algorithms mav be empioyed for die, rent biocl_. These biod..,_
may be ::'..archin__ in time at dizYeren: steeds and commuvfcatin__ _ith each other at

-2ifr.'eren'. instances. _,_,_.en the " _" "" -_"....._r,.ote... is defined in such zenerai :e,.r:r..s...... rbr

,--3":naa---c"';load baiancin_.q.....becomes accarent. Especially• if :he CFD _rob[em is a large
one. :c be solved on m_v _rocessors over -_oe:-iod of manv hours "_'-_!oa- "-',;__,....r.c:',:,..... c_n

aid ;o soive some of:he fo[!owing probiems:

• toad of each :rocessor of a system can change dynamically on a muhi-:aser svszem:
• • ,..,;one would !ike :o use all the processors on :.he system whenever a,,afl...e.

• at. '-nba!anced !oad distribution mat• cause the calculations for certain ':iocks :o take

"-:" ion=or :hun others, since "'_ slo,,vest block decides the _v,,.,_,_ time for the

era!re problem. This mav occur during different instances of the execution if the

al_od_F..m is dynamic, i.e.. solution pararnerers change with the solution.

Based on the above considerations, the load balancing problem was treated by

d:,na.micaily adjuszing the distribution of the blocks among available processors during

the pr_rzrn execution, based on the loading of the system. The demiis of the load

balar.c!.n__o" ai_ori:i'_.,'n was presen:eci previously [1.2]. Here. only the basic s_eFs of the

c.vnam:c load oalaccm_ process _e tisred as _:bllows:

• Obtain reliable computational cos: information during the execution of:he code.

• Obtain reliable communication cost iv_formation during *,.heexecution of "..he code.

• De:e..'::-nine the total cost in :en'ns of computation and communication costs of the

exis_ir" 4 block distribution on _he __iven system.

• Pe-odicallv. re-distribute the biocks to processors to achieve load balancing by

o_:imizin_ the cost mnc:ion.

In the present paper, an Ealer and Navier-Stokes code, PARC2D, is employed to

demonstrate the basic concepts of dynamic load balancing. This code solves unsteady

flow equations using conservation variables and provides different order Runge-Katta

time-_epping schemes [3]. Parallel implementation of the explicit time-integration

algorithm involves the follov, ing steps:

• Di'_ision of the computational mid into a geater number of blocks than the number of

available processors with. one layer of elements overlapped at inter-block boundaries.

• Introduction of the block and interface information into the data base management

program, GP.AR [4.].

• Distribution of the blocks and associating interfaces among the available processors

by using GPAR.

Definition of PARC2D as a block-solver for the solution of the equations inside each

block either for Euler or Navier-Stokes equations.

Preparation of" an interface solve`', to communicate with its parent block and its _in

interr'ace. As can be seen fi'om Figure 1. each block automatically sends ixttbrmation

:o its in:erfaces aft, e,-"each iteration step. T'ne inter2aces will then send irdormadon to

:,heir r,_,ins whenever aecsssary, for the _in to u_date its parent block. Tae task

assigned to each block may not be identical, due to Sac:ors such as: size of the block.

choics of eir.i'_er Euier vs. Navier-Stokes equations for a pa,=icular block, size of the

:ime-s_eo tbr solving each block and the time-s_e? :'or communicating between the

inte_aces. Faus. controlling communications and com_utations in such a truly

?.eterogeneeus environment becomes even more critical.

,.'-._.ese issues are discussed be!ow in detail, ."or a sampIe problem.

Processor I Processor 2

Fi_ I Communication bev, veen two nei__hbofin__ blocks and related inte:-faces (f'2A and

if23 x- ,- blocks. F'A3 and Fa_, are inter:aces).

2. INVESTIGATION OF D_._'AMIC LO.ad) BALA.",CING STRATEGIES

Numerical experiments were chosen to demonstrate some su"ategies in dynamic load

ba[m':cing for managing computer systems and algorithms. The chosen test problem is a

t-wo-dimensional grid for an inlet with 161,600 grid points as shown in Figure 2. The

flow region is divided into I7 blocks as shown in Figure 3, each with approximately

10.000 grid points.

Figure2. ComputationaiGrid for ther_n/e,,(I61,600nodes).

t,3ri, 92,o1,5

ur, ,_,c. :f :.he ,o_,-,e.c o B,oc:G for "So :n:eE Ovid (n_":;.ber of __.d poin:s
in e_ch bicck ,_re__howv.in uar_.--.:heses_.

2.1. Load Balancing for Variations in the System Loading
Or.e v','-" of :oai bal_.c'n__ sL-z:e__v !.-,vo[ves conz':iik"._ :he :.om_uter s'_s:em. It mav be

a he:erogev.eous 2_-.i mui:i-user s?s_e.'r.. [t [s also dvn_,a-uic La _ sense flaat it changes over

a [cr.__ ruv.. The :.-:-='_ prcbiem was .-_:'. on four processors over a period of au_roxLmate[v.. ,

7.ve!-.e ho_-s. C,:.-_-.,uv/ca_ion _':d ,:cm_utation cos:s for each process were -eeorded and

a io_d balancing was 3e_on'r.ed aft, or approxima,,e!y eve,w thirty minutes. Figure 4

sunu-nar/_zesr_'e.'esuRSof :,hiscomeumtion fora con,'oileden,,ironment..-ksshov,-nin

Fig,_-e !a. "he [oadhg of cezain mac?±nes was incze_e! by adding exz'aneous processes,

while on or,her _.zchines no ocher jobs are :"_nning. Vae response of the load balancer is

sum_":'..arize! m F!gure -'b. ©vet i-' ioad balance CTc!es. the elapsed time for each
ire:zion ';._!es be.-'.veez 1.5 :o -' secor./s. The load :al_cer recorded the communication

_,d com_u:zvon zos_ dam ore.- a cTc!e and predic:ed the elapsed time for a suggested

load bal_cei dis-r, bufion. A_ c_, "e seen from this fig-ere, the predic:ion is quke

acc,cate _d -ed,,:.cel :he e[aese! fir:'..e by remov_,g _e bor'dezec!_. Figure 5 illustrates

uhe same proble.-., r_, on an uncont:oiled environment. Four heavily used processors
were chosen dui-_ _he "_ -;-=_a?_ oFe:_-fion. The load balancer responded in a similar

,'hs_'ion :o a r-",:he: !r':e'_z'_'[az [oa,lin_ .-__ne:'r. of the s:.stem. [t [s ;.nteresting to note that in

this case, the total elapsed time was not excessive in comparison with the elapsed time for

the dedicated machine.

43 r i , l

32
3

22

2

iI ' M

Od exti

- 0 5 I0 15 20 2_<

22

16

12
= 10

8

d.
------" 2

0
_0

Number of 3alanc.-Cyc'_s

i i i i

5 I0 15 20 3O

Number of Balance Cycle_

Figure 4a. Load balancing ;..na controlled
environ.ment.

Fig,_e 4b. E_ra load variation on the

system for the controlled environment.

.3

t.s

- i.-'

-- _i
_'" 1.2

= : !

• 0<

1 , l I I]

.Me----,_'_.dT',me-- I

11

9

3
._ 7

: 6

. 2

jl 1 "

_ Total E._x-a road --

. " ,).. tI '_I#_' J "X ""

"_ w t _ _. _ ; }. #'_.._°

" _" :- _ I) r

I.

m

,..w

u

,.,,i

5 £0 15 20 25 30 5 I0 15 20 _ 30

Number zf Balanc." Cycl_ Number. of Balanc.- Cycles

Figure 5m Load "caiancing in a multi-user
envirollment.

Fig,=e 5b. Extra ',oad variation on the

system for the multi-user environment.

2.2. Load Balancing for Heterogeneous Algorithms in Parallel Computing

The second 7..7e of load balancing strategy involves optimizing the algorithm on a

parallel _'stem and dynamically load balancing the problem as the algorithm adapts to

the solution. \\inen running the PAR.C2D code. one can specify, a time step for each
brock _om :he CFL condition _ defined be!ow:

],.Xr = CFL / Ma.x !(!U).a[K."!)+ 2 _']<,1",!_'.'" ' gg""'
(z)

,,,,here C) are the contravariant velocities, a is the speed of sound, Re is the Reynolds

number, _ is the viscosiq,., p is the density., and K/ is the Jacobian matrix. This time

step is calculatedfor all the grid points insidea block, dependingon the local flow
conditionsand grid size; r.he minimum value of all such time steps is chosen as the time

step for that particular block. Since, the flow conditions are chanajng, the time step for

each block changes over the history of a complete run [5].

Variable time-stepping with variable communications is illustrated in Figure 6a for two

neighboring blocks on two different processors. In this case, Atmi" is a global reference

time step for all the blocks. The fast block at this instant is operating with a time step of

3At=in, while the second block is running with 2Atmin. The arrows indicate the instances

at which an interface of a block sends a message to its neighbor. Fi=mam 6b shows a non=

optimum solution. Here, while the computations are performed for each block solver

with its own time step, each block is sending information to its nei_p2bor at every, global

time step.

T --

i

)

,i, 7 ti,
M es._n ges __L,_

lllock I Illock 2

T

2v_U,,.
T

Fiaure 6a. Communication occurs when

necessar?'

£ t

14 Mes._ntles

T -- -- 4_m-

I _ _ - -T
36t ,,,i.

I _ _ _ I _,=

Ilh)ck l llh)ck ")

Figure 6b. Communication occurs at the

global time step.

Figure 7 provides a summary of the computations with fixed and variable time-

stepping. The reference case is case I, where the time step is the same for all the blocks.

30O

-:oF
-.a
.P- _.0-
-,.,)

- iO0=

0
0

", Case I:--

"--',, Case ""
..%".' Case 3: - = -

%%

%

' ; I I I ,

2 a. 6 8 I0 12 I4 16 18

Numbe:ofMachiaes

Figure 7. Parallel efficiency vs. number of machines.

The equauons ace solved _br each block ateach time stepand the blocks communicate

with each other after each time step. As can be seen from this figure, the parallel

e_ciency fails below 50% after 8 processors for the sample problem. Case 2 indicates

the importance of variable time-stepping that is local to each block, ha this case, each

block chooses its own time step for solving the equations for that block, however

communicates with its neighbors based on the global time step, as described in Figure 6o.
As can be seen from Figure 7, after 6 processors, communication cost becomes the

dominant factor for this case. Case 3 i11ustrates the need for intelligent communication as

suggested by Fixate 6a, In this case. a block sends a message to its neighbor only when

necessary, since each block is solved only when necessary. In this case, the parallel

efficiency can be maintained at a ,higher level even when the communication cost

becomes dominant. For example, around the leading edge of an airfoil with ve_ fine

grids, one can choose time steps of different order than other blcc!_ and save

computation dine. Also. these blocks may not need to talk to their neighbors after each

soiution time ste_. T'_e comDutational savings, discussed above, are pureiy due to the

reHnements in the use of the algorithm. When pe_orming parallel computkng, one can

localize the algorithm according :o the flow conditions and grids, especially for the

soiution of large erobiems with compiex =n'ids. [t should be remembered that all of the

above cases were !oad baianced :o determine the most e_cient distribution ,.ruder given

conditions. These e×_enments were possible only after a reliable load balancin_

procedure was developed.

The second ex-ampie 'knvoives the solution of Euler and Navier-Stokes soiutions at

di_-erent blocks. The rime step restriction for viscous computations is more :esmcfive

than Euler com_utations as can be obser_,ed from Equation I. Figure 3 illuszrates a case

',vhen the compu:ations were sta_ed by an Euler computation for Mocks !2-17 and
Navier-Stokes soiution for'otoc_,r.s'_ l-i I.

4.5

3.5 L

"__ 3 ['EuI_-NS (Varia01_ "-.me sl_pin_l)

2_5 [

"= 1.5

-- t
,.,
m

,= 0.5

< 0
0 2 14

' ' L ' 1 '

4 6 8 IO 12

Number of Balance Cycles

Figure 8. Load balancing due to change in solution algorithm.

The numericalintegration took approximately2.1 secondsper time-step. Loc,al time-
steppingwas employed for all blocks. The distribution of the 17 blocks among 4

machines is also shown [n the figure. AR_rwards, blocks 12-17 were switched to a

Navier-Stokes solver and global fixed dine-stepping was employed for all blocks. As can

be seen again from this fi=o'ure, the load balancer provided a new distribution which

eliminated the bottleneck by removing several processes from machine 2 and loading

machines I and 3. Again in this case, it is shown that an algorithm can be deHned and

executed locally on a flow re_ion for improving efficiency. By defining the parallel

computing in a heterogeneous environment, one can employ an algorithm in a most

efficient manner whenever necessary.

The third example relates to the development of algorithm.s which communicate in a

selective manner. The cost of communication ks still the dominant factor in pazzllel

computing. It only makes sense to develop Lntekligent intert'aces to communicate between

the blocks-processes. Fig,zre 9 shows v,vo blocks in a one-dimensional flow f:,eld which

are sending messages to each other at different speeds.

max(O,a-u)

(h
A

u+a

Figure 9. Communication in subsonic _-nd supersonic flows.

._so by remembeing the g_d requirements for the grid points on an interface, send and

receives be,'-,veen the tv,o .':eighb, oring blocks can be executed at different time intervals.

The :est case is a s_eciEc one ',vhere most of the flow is supersonic except for blocks 8-

I I which are located inside the inJet. In this case for all supersonic interfaces, one can

send messages only in or,.e direction. Figure I0 demonstrates such a case. The time-

inte_ation star_ed where each block v-as communicating with its neighbors as discussed

above. The dis_bution of the blocks among the processors is also shown in the figure.

The solution scheme was -.hen modified where the supersonic flow regions the messages

were sent onl.v in one di:-ec:ion. The load distnbution was also modified as shown in this

figure which reduced the elapsed time per iteration from 2.5 to 1.8 seconds. This figure

also shows a change in the loading of the system after the 13th balance cycle which was

correc:ed by the load bala_',ce: a block was moved from machine 3 to machine 4.

The above examples i11ustrate _e advantages of pa.rallel computing defined in a general

fashion. Concepts such _ heterogeneity, and asynchronous computations in terms of both

algori'dwns and computer s:,ste,.'-ns can help to improve efficiency of parallel computing.

t2z

< 0

J

l i

I I |

iO 15 20 25

Number of Balance Cycles

Figure I0. Load balancing in subsonic and supersonic flows.

ACIC\OWLEDGMENT$

T'ais research was supported by the NASA Le_,ds Research Center under NAG3-1577.

Comcu:er access :rovided by NASA and IBM is =._-atefully acknowledged. The authors

_ank S. Secer off [UPL['s CFD Laborator7 for his assistance on the implementation of

r.he !oad balancm_ _o'orir.h.m.

REFERENCES

!. Y.P Chien. A. Ecer. H.U. Akay, F. Carpenter and R.A. Blech, "Dynamic Load

Balancing on a Ne_vork of Workstations for Solving Computational Fluid Dynamics

Problems." Computer Methods in Applied 3,[echanics and Engineering, vol. 119, pp.
17-33, 1994.

2. Y.P. Chien, A. Ecer. H.U. Akay and R.A. Blech, "Environment Requirements for

Using Dynamic Load Balancing in Parallel Computations," Proceedings of Paralle!

CF'D '94, Edited by A. Ecer et al., Elsevier, Amszerdam, 1995.

3. G.K. Coercer and J.R. Sirbaugh. "The PARC Code: Theory. and Usage." Arnold

Eagineermg Development Center, TR-89-I5, 1989.

". H.U. Akay, R.A. BIech, A. Ecer, D. Ercoskun, B. Kemle, A. Quealy and A. Williams.

"A Database Manac,_ement System for Parallel Processine of CFD Al=onthms,

Parallel CFD 92, Edited by R.B. Pelz, et al., Elsevier, Amsterdam, pp. 9-23, 1993.

"_ H.U. Akay ar.d A. Ecer, "Efficiency Considerations for Explicit CFD Solvers on

ParalIel ComFuters," Proceedings of the International Workshop on Solution

Techniques for Large-Scale CFD Problems, Montreal, Quebec, Canada, pp. 289 -

3 t-,'September 96-'_8 1994.

AIAA 96-3302
Parailelization and Dynamic Load Balancing
of NPARC Codes
N. Gopalaswamy, H.U. Akay, A. Ecer and Y.P. Chien
Computational Fluid Dynamics Laboratory
Purdue School of Engineering and Technology, IUPU!
Indianapolis, IN

32nd AIAA/ASME/SAE/ASEE

Joint Propulsion Conference
July 1-3, 1996 / Lake Buena Vista, FL

For permission to copy or republish, contact the American Institute of Aeronautics and Astronauttc.s
1801 Alexander Bell Drive, SuPra 500, Reston, VA 22091

PARALLELIZATION MND DYNAMIC LOAD BALANCLNG OF NPARC CODES

N. Gopalaswamy, H.U. Akay, A. Ecer and Y.P. Chien

Computational Fluid Dynamics Laboratory.

Purdue School of Engineering and Technology. [UPLq

Indianapolis. Indiana

Abstract

Parallelization and dynamic load balancing of the 2D and 3D NPARC flow codes of NASA are presented. A previ-

ously developed para.llel database package GPAR. and a dynamic load balancer program DLB are used for

both the 2D and 3D versions of NPARC, Performance characteristics of the implemented ',algorithms in 2D and

3D internal flow configurations are explored. Dynamic load balancing studies are carried out with the two parallel
codes for an engine inlet configuration. The benchmark cases consist of a 213 case with 4.592 grid points and two

3D cases: one with 50.950 grid points, and the other with 240,000 grid points. The grids are decomposed into solu-

tion blocks and parallel computations are tamed out with v_'ing number of processors. The pressure re-
sponse to unsteady perturbations of the inlet temperature is calculated using a variable ume-step approach specifi-

cally developed for parallel computations which takes into account the time-step variations in blocks with opti-

mized communications between the blocks. It is round that time accuracT is maintained with the benefits of in-
creased speedup with the above approach. Load balancing is found to be effective only in large cases where block

computation costs are more dominant than the communication costs.

Introduction

Our current research efforts are auned at achieving an

efficient computing paradigm on parallel computers.

Parallel computers can be of many types, including
MMD and SLM-D computers though our attention

will be primarily focused on MINff) computers. The

codes chosen for parallelization are the NPARC codes
(2D and 3D) obtained from NASA LeRC t . Each code

lends itself easily to pamllelization by the method of

domain decomposition. A software package called

GPAR 2 developed earlier in CFD Lab in conjunction

with a dynamic load balancer called DLB 3 was used

for parallelization. The non-dimensional form of the

governing equations for visc_ms flows are cast in con-

servation form in the folh_wmg fashion:

bQ bY._ 1 3G j

3t + 3Xj - Re aXj
(1)

where Q = (p. pu. pv, pw. pE) r. F_, are the inviscid

flux vectors. Gj are the viscous flux vectors and Re is
the reference Reynolds number. The conservation

laws are solved in strong conservation law form after
transformation to computational coordinates. Al-

though both implicit and explicit flow solution options
exist, the explicit Runge-Kutta time-integration

scheme is used for solution of unsteady flows. In this

paper we show paraUelization of the explicit solvers
of the NPARC codes for unsteady flows.

The problem to be solved over a given domain is par-

a/lelized by dividing the domain into many sub-do-

mains, called blocks, and solving the governing equa-
tions over these blocks. The blocks are connected to

each other through the inter-block boundaries, called
interfaces. These blocks are allocated to processors in

the parailel computing environment, and the solution

of the problem over the entire domain is achieved by

solving the governing equations over each block, with

the information exchange between the blocks handled
by the interfaces.

The NPARC codes (2D and 3D) already use a block-

structured solution approach. It is only necessary, to

v, rite the interface communication part. called the "In-

terface Solver" to implement parallelization. The in-
terior point algorithm which operates on the points in-
side the block, is termed the "Block Solver" and is es-

sentially unmodified. This block-structured approach

is highly suited for parallel computing since each

block can possess its own set of parameters which de-
scribe the flow-field within the block more accurately.

instead of using a global set of parameters applicable
over the whole domain. For instance blocks far away

from no-slip surfaces, in the absence of free-stream

1

turbulence,canbemodeled adequately with the Euler

equaUons, without the additional expense of comput-

ing the viscous terms which are negligible. Such an
approach has been used in the parallelization of the

NPARC codes in con)unction with an improved com-

municaUon strategy.

During parallel computations, often bottlenecks occur
due to communication between the blocks over the

network of processors. We expect that with the avail-

ability of larger number of processors over the coming

vears the capability to solve larger problems with
more CPUs will also increase. The communication

cost may become more critical as such developments

occur. Another important objective has also been the

identification and optimization of communication cost

in a heterogeneous environment. The following sec-
tions descnbe the communication strategies and load

balancing algorithm used to implement efficient ex-
ecution of the NPARC codes.

Variable Time-Stepping Approach

When the flow-field has been decomposed into solu-

tion blocks, we can select a time-step for each block

for computing unsteady flows in two ways. The de-

fault NPARC algorithm picks the most restrictive

ume-step among all blocks, and all blocks are ad-
vanced in time with this time-step for transient flows.

An approach, called the variable time-stepping

method _. is considered in this paper. In this approach,

the block time-step is picked as a multiple of the most

restrictive time-step and at the interfaces, and linear

interlx}lation is carried out between the two time lev-
els to obtain the updated boundary, conditions. The

time-step for a particular block is determined from the

CFL condition for stability, of the explicit Runge-Kut-

ta time-stepping algorithm from the following expres-
sion:

C
At = ,7 (2)

i - // -

Max, +a K; +Gp

where. C is the Courant number. Uj are the con-

travariant velocities, a is the speed of sound, and K'j
are the metrics of transformation. The viscous correc-

tion includes the reference Reynolds number Re, the

non-dimensional viscosity u and density p.

The time-step is chosen as the minimum of the above

expression over 'all the grid points t. Thus for each

block the most resmctive time-step can be different

depending upon the g.nd and flow conditions. It has

been usually found that the stability, condition also

satisfies the accuracy requirement. Hence. for each

block we can pick a certain multiple of a global mini-

mum time-step which satisfies the stability conditions
for all blocks.

Atj = njAtmm ;j= 1.2 iV; n: <_n:,.= (3)

where n, is an integer deterrmned from the CFL con-

dition in Equation (2), n:,,_ is a maximum limit /or

n, ftypically n),.,,_ = 5 for time-accurate solutions, for

steady flows nj,._, is the maximum permissible time-
step ratio in each block). N is the total number of
blocks. Even for blocks which are of equal size. de-

pending on the flow conditions, the computational ef-

fort required to advance a cert,ain amount in time can
be different ff the time-steps chosen are different.

Some variable time-stepping studies have been tamed

out previously. 5 and their efficiency investigated.

Communication Strategies

While the Block Solver takes care of the solution of

the grid points inside the block, the Interface Solver
handles communications between the blocks. The In-
textace solver evaluates the information it receives

from the block and decides if it should be sent to the

neighboring interface solver which is located in an-

other processor. The interface solver may also modify
the information before it sends. For instance, for un-

steady computations for each block we choose a time

step for the computations. This is currently based on
calculating the Courant numbers for all ga-id points

and utilizing the critical Courant number inside a

block as a basis for choosing the time step for the par-
ticular block. Each block marches with its own time

step and stores the boundary information into its inter-
lace. The interlace can store and interpolate the data

and communicate with its neighbor based on the criti-

cal Courmlt number of the grid points local to that in-

terface. Another consideration is the magnitude of the

wave speeds across the interface at each direction:

u + a versus u- a which give some preferential di-

rection to the conununication process. Thus, the time
step necessary, for communication between the inter-
faces does not have to be the same for the interface in

American Institute of Aeronautics and Astronautics

theupstreamblockandtheinterfacein thedown-
streamblock. In summary,thefollowingtypesof
communicationalgorithmswereemployed.

Scheme 1: Same time-steps for blocks and
interfaces

The block time-step and the communication frequen-

cy of the interfaces belonging to the parent block are
chosen to be identical. However, the blocks can pos-

sess ditterent time-steps in a variable time-stepping

scenario. Figure 1 shows the relation between the

block ttrne-stepping and the interface communication
frequency. Each block advances in time with a certmn

ume-step, chosen to be a multiple of a certain fixed

global minimum time-step.

Solve&Send

Solve&Send

Solve&Send

Solve&Send

D. .4

Block 1 Block 2

Figure 1. Interface communication frequency based

on the block time-step.

Since the interlace nodes belong to the parent block,

these nodes are also solved for during the block solu-

tion step. Then the interface nodes are updated with

the values at the advanced time-step from the block

and sent to the neighboring interfaces. Also, in order

to solve for the next time-step, the block needs bound-

ary conditions at its interfaces from the neio_daboring
blocks. Hence, it waits till the information is avail-

able for all the interfaces before it proceeds to the

solve for the next time-step. If a block proceeds with

a smaller time-step than its neighbor, it receives infor-

mation from the neighboring block which indicates

that it is at a higher time-step, and hence, the slower

block linearly interpolates (in time) the boundary val-
ues from the neighboring block at its current time lev-

el.

Scheme 2: Different time-steps for blocks and
interlaces

Since the parual differential equations of fluid me-

chamcs are usually very. stiff, the time-steps needed to

integrate the differential equation are quite small in

order to sausfy stability. Since the rest of the solution

develops along the rest of the eigenvalues of the sys-
tem which are smaller than the maximum, which con-

trois stability, satisfying stability also satisfies the re-

quirements of accuracy. Accuracy of a scheme is
achieved when the solution is integrated with a time-

step which contains all the eigenvalues. This observa-
tion. coupled with the frequently encountered scenario

that the block time-step is decided by a relatively

small region of the block, allows us to propose a
scheme in which the interfaces need be updated only

infrequently, for example for a time interval corre-
sponding to the maximum stable ume-step for the in-

terface nodes. For instance, for highly stretched gnds.

the maximum stable time-step at the interfaces present

in the region where the element lengths are large
could be about 100 times a certain global minimum

time-step, while the block Ume-step might be restrict-

ed by regions where the element lengths are very.

small, for example close to the wall. Thus. the inter-

faces need be updated only infrequently relative to the

block time-step. The elements or nodes in the inter-
face are solved by the block but the interface is itself

updated only at an interval corresponding to the sta-

bility restriction tor the interface nodes alone. Alter

the update, the neighboring interlaces exchange the

information required for the next time step for the
block solution. It usually happens that the block

time-step may be such that the interface update inter-

vat may not coincide with a block solution time-step.
In such a case, the solution for the interface nodes is

interpolated from two block solution time-levels, and
then sent to the interface. In case of matching and

overlapping interfaces, the neig3aboring interface may

not have exactly the same stable time-step as its

neighbor, since the metrics calculated numerically for

one interlace may not be the same as that for the

neighbor, and hence the non-dimensional stable time-

step lbr one interface may not be the same as its

neighbor. Local grid stretching effects also play a part
in yielding differing stable time-steps for neighboring
interfaces. In such a situation, the interface which is

at an advanced time-step, sends the information first.
and then waits till the other interface catches up or

passes. The slower interface interpolates the values at

3

,-Mnerican Institute of Aeronautics and Astronautics

theboundary,fromthesolutionreceivedpreviously
andtheintbrmationcurrentlyavailableat thehigher
tune-levelfor theneighbonnginterface.Figure2 il-
lustratesthestrategyfollowed.This strategy results in

less communication compared to the previous case

which may yield savings in the elapsed time for com-

putation of the overall problem.

t Linear In_eq_olation +

Block 1 Block "_

Figure 2. Interlace communication frequency based

on the local stability condition for the
interface nodes (Stb = block time-step, A4f

= interthce ume-step).

Scheme 3: Interface time-steps based on interface

characteristic speeds

A communication frequency based on the local char-

acteristic speeds in the interface region has also been
proposed. Figure 3 shows a simple one dimensional

example of the above discussion:

U

tl+a °4
..,.-._:

i.."..i_,::.:.
i_)y:j

&x

a-u

(j)

Figure 3. Communication between blocks based on
local characteristics.

As can be seen from the figure, if a block were com-

pletely supersonic, then from the direcuon of the char-

acteristics or eigenvalues, it is not necessary, for the

block downstream to communicate with the upstream

block. However. the upstream block must necessarily
send information downstream. If the blocks were sub-

sonic, then the communication frequency between the

blocks would depend on the tbllowing ratios:

At: = --
It -" ;.I

_X

Atj - (4)

(a - u) > 0

where Ax is the local element length in the interface

region, and tt is tile velocity of the fluid and a is the

local speed of sound. If the flow were completely su-

personic, then a- u < 0. and hence no messages
would be sent upstream to the neighboring interface.

Thus At i --+ _ and there would be a significant re-
duction in the communication. The block solves for

the solution variables on the interface nodes. The in-

terface nodes are updated with the block solution vari-

ables at a tame interval corresponding to the commu-

nication frequency calculated from Equations (4).

Since the block time-step may be such that the time
interval at which to update the interface may not coin-

cide exactly with a block solution time-step, two
block solution levels are stored, and the interface is

updated with a linearly interpolated value from the
two solution levels. Similarly. when an interface re-

ceives information, it may not coincide with the block
solution time-level, and hence the interface solution

variables are stored over two time levels. This way
the solution variables for the block boundaries can be

obtained by an extrapolation of the interface solution

variables stored over the two previous time-levels (in-

terface time-steps or time-levels). Also. the solution

may be developing, which means that a shock initially

located in a particular block may start moving up-

stream as the solution progresses and eventually cross
over into a block which was completely supersonic.

Thus, if communication were completely cut-off from

the downstream block to the upstream block, the
shock would be stalled in the downstream block for

the whole duration of the solution yielding a final so-
lution which would be incorrect. Hence. even if the

interface nodes currently appear to have supersonic

4

American Institute of Aeronautics and Astronautics

flow,anupstreamcommunicationis still enabled as a

certain multiple of the block time-step, in order to al-

low a developing flow to let a shock move upstream
across blocks if needed. A brief illustration of the

communication strategy is shown in Figure 4.

For multi-dimensional flows, we can extend the above

reasoning by considering each direction separately.

The physical coordinates map to the computational
coordinates (,.L r/, (). Since the interfaces are usually

aligned along a constant index or computational coor-

dinate, the contravariant velocities (U. V. W) along

each computational coordinate direction should be

considered. Along each interface, only one con-

travanant velocity will exist in a direction crossing the

interface, the other two are parallel since they are mu-

tually orthogonal to each other. For example, if there
is an interface along a constant _ direction, only U ex-

ists in a direction crossing the interface, the other two

contravariant velocities V and W are parallel to this
interface.

U = _,u +5. vv+4:w (5)

at, u +a'4: + +

atj -U + a_ + ,_'-:+ :,'..
(6)

where the pair of interfaces are denoted by the sub-

scripts i and j. The same approach is used for inter-

faces aligned along constant 17and constant (direc-
tions.

Ax
At = -- _ __

u+a

Block 1

1.1+3

At =

__L__

Figure 4. Communication frequency
interfaces based on local

speeds.

Block 2

between the

characteristic

'variable time-stepping lot each block and interface

has been implemented in a parallel environment. For

cases with variauons in grid size and flow conditions.

computauonal efficiency can be improved significant-

ly.

Load Balancing

Following the above discussion, the objective is to re-

duce both the computation and the communication
cost by making parallel computing optimally suited to

local conditions. Apart from the algorithmic consid-

erations, one also needs to consider the performance

of the overall computation itself in terms of the pro-

cessor speeds and communication speeds. Bottle-

necks can also arise due to the computational load of

the processors and communication times between the

processors. Computing on a nee,york of workstations

or on dedicated multi-processor systems has its own
set of issues to be addressed in order to obtain maxi-

mum efficiency, or in other words, a solution in the

shortest possible time for a given set of resources.

Obtmning maximum efficiency leads to the necessity
of load balancing, or balancing the computational load

on each processor during the execution. For large

problems, it is typical to have a _eater number of

blocks compared to the number of processors or ma-
chines. As an example, for the computation of a

three-dimensional wing section which has been de-

composed into 150 blocks, there may be only I0 ma-
chines available. In many cases, it is advantageous to

decompose the problem into more blocks than the
number of machines available, since load balancing

can be used to alleviate bottlenecks due to a pornon of

the domain, or the processor itself.

The load balancing pro_am or the "balancer" needs

statistics about the execution of the application code

in terms of the computational and communication cost

for each block on every processor, and also the num-

ber of extraneous processes on those processors. This
is then factored into calculating the cost function. For

example, the cost of computation can vary, due to a
change in the solution algorithm, or due to an increase

in extraneous processes started or stopped by other

users. The response to the two causes is different A

progam called "Ptrack" (process tracker), executes

concurrently on each processor on which the blocks

are executing, and monitors the extraneous process

5

American Institute of Aeronautics and Astronautics

loadontherespectiveprocessors.The execution sce-

nario is illustrated in Figure 5.

APPLICATION
PROGRAM

t

B,M-,_NCER

GP,_R.

pVlVl

APPL

PROCESS
TRACKER

Figure 5. Balancing of the application program.

Load balancing can be of tv,o types, static or dynamic

load balancing. In static load balancing, the blocks
and interfaces are allocated to the machines (or pro-

cessors) in a fashion that the resulting overall compu-

tational speed of the problem achieves a maximum.
Factors which come into consideration here are the

block and interface sizes, proximity of blocks and in-

terfaces, speed of the individual machines, and the

communication speed and bandwidth of the network.
all or some of which can vary. In d.vnarmc load bal-

ancing, this initial distribution can change according
to external factors such as extraneous processes added
to or removed from the machines during computation.

and also due to changes in computational speed of the
blocks and interfaces themselves on the machines due

to changes in the solution algorithm or the solution
behavior. In a heterogeneous computing environment,

load balancing becomes extremely important if effi-

cient utilization of the given resources is desired.

The load balancing scheme developed at CFD Lab is

based on the greedy algorithm 3. which tries to mini-

mize the total cost of executing all the blocks. The
formulation of the cost function can be described in

the following way:

i. Let the computation cost of processing block i

on a processor j be c[. Here. i can take values
from 1 to n where n is the number of blocks

executing, and j can take values from 1 to P

where P is the total number of processors the

blocks are executing on.

ii. Let the communication cost of sending inter-

face data from a processor j to its neighboring

interface be b jk. which may be on a different

processor k.

iii. The computation cost of executing blocks on a

computer j is also influenced by the waiting
tune W; for each block i. since it has to wait to
receive the interface information. The total

cost of computation on a processor j is:

C j : Z(c[+ b_k + w,) (7)

where b: k is the communication cost required

per block i on processor j.

The load distribution problem then reduces to mini-

mizing the maximum of the above computation costs

among all the blocks, since it is the slowest block
which is the bottleneck. Hence if C = max(C:) then

C should be minimized to achieve load balancing.

The greedy algorithm is used to minimize C, the com-

putational work for that being equal to O(nP z) where
n is the number of data blocks, and P is the number of

processors being used.

The computation and communication cost must be

computed in order to serve as the input to the load
balancing algorithm. This involves placing some

time-stamps inside the application program to obtain

the time spent by the application program in comput-

ing the data block and the time spent by the applica-

tion program waiting to receive information and the
ttme to send the required information. Based on this

information, the cost function C j for each processor is
calculated, and the data blocks i are redistributed

among the processors if necessary, to balance the com-

putational load. This process is done periodically dur-

ing the execution of the code for every specified inter-

val. called the balance cycle, to monitor the progress

of the computation. Typical balance cycles are in the

order of 100-500 time-steps.

6

American Institute of Aeronautics and Astronautics

TheNPARCcodeshavebeenenabledforloadbalanc-
ingbymeansofcertamcallstotheDLBlibraryfunc-
tionswhichmonttorthetimespentincommunication
andcomputationin termsof bothCPUandelapsed
time. Informauonaboutthenumberof bytesex-
changedbetweenprocessorsisalsorecorded,whichis
factoredintothecalculationof thecommunication
COSL

Test Cases Considered

Three test cases were considered. ,_1 the grids for the

following test cases were supplied by NASA LeRC 6.
The Euler/inviscid version of the N'F'ARC code was

used to compute the test cases with the 3-stage ver-

sion of the Pseudo Runge-Kutta time-stepping

scheme. The plane of the axisymmetric inlet is shown

in Figure 6 together with the steady-state solution

from which perturbation is started. The 17-block divi-
sion used for this 2D/a,,dsymmetric case is also shown

on the same figure.

.,_ _taoon_ Station 10
.J i z ._ 4 $

Figure 6. Steady-state density contours for the

axisymmetric inlet.

Test Case 1:

A two-dimensional case with 4,592 grid points was

used to study the pressure response to a sinusoidal

temperature perturbation with a frequency of 225 Hz.

The grid was divided into 17 blocks and the number
of machines was vaned from 1 to 8. The inlet Mach

number was 2.5 and the exit was subsonic with a

Math number of 0.3. The exit boundary condition is

based on a scheme developed previously for NPARC 7.

The reference inlet pressure was 117.8 lb/ft 2, and the

reference inlet temperature was 395 Rankine. The
cowl-up radius of the inlet. Rc=-18.61 inches, was

used to non-dimensionalize the lengths. The ampli-

tude of the sinusoidal temperature perturbation was

5% of the mean value (395 Rankine). The pressure

response was measured at two locations, X/Rc=4.08
and XJRc=5.01. downstream of the normal shock in

the diverging section of the inlet.

Test Case 2:

A three-dimensional case with 50.950 grid points cor-

responding to a 60 degree sector of the axisymmetric
inlet was divided into 16 blocks and subjected to the

same inlet temperature perturbation with a sinusoidal

frequency of 225 Hz and the pressure response stud-
ied. The inlet Math number was 2.5 and the subsonic
exit had a Math number of 0.3.

Test Case 3:

A three-dimensional case with 240.000 grid points

corresponding to a 360 degree O-grid of the axisym-
memc inlet was divided into 20 blocks and a steady

state solution was sought for an inlet Mach number of
2.5 and subsonic exit Math number of 0.3 as shown in

Figure 7.

M=2.5

M=0.3

Figure 7. Three-dimensional grid for Test Case 3

with 240,000 grid points.

For each of the above test cases, the following strate-

gies were considered to investigate the performance of

the new algorithms.

7

American Institute of Aeronautics and Astronautics

Default Scheme Results

The base case is chosen to be global ume-stepping

with the same time-step for all the blocks. A time-

step of 6 _s is chosen as the global time-step and

computations are performed for approximately 5000

steps till a periodic response is achieved. This corre-

sponds to an interval of approxtmately 0.035 seconds.

Then. the same case is run for all three grids and this

time dynamic load balancing is enabled and the block

distribution after load balancing, and the resultant

elapsed time and CPU time is recorded.

Scheme I

This time, the variable time-stepping option is en-

abled, in which each block picks a certain multiple of

the global time-step depending upon the critical

Courant number inside the block. The initial distribu-

tion of the blocks is the same as obtained from the

previous step with constant global time-stepping. The

interfaces conmaunicate with their neighbors at each

block solution step as outlines in Figure 1. Again the

elapsed ume and CPU ttme are recorded for this case

with and without load balancing enabled. The pres-

sure response is plotted for the 2 stations with time.

and compared to the base case.

Scheme 2

Variable time-stepping in addition to interface com-

munication which takes place at an interval corre-

sponding to the critical Courant number for the inter-

face nodes is studied. The communication scheme

used is shown in Figure 2. The elapsed time and CPU

time are recorded and the pressure response plotted

with time. Load balancing is enabled and the same

case is rerun with all parameters recorded.

Scheme 3

Finally, variable time-stepping in addition to interface

communication which takes place according to the

characteristic speeds of the solution variables in the

interface nodes is investigated. This corresponds to

the communication scheme shown in Figure 4. As be-

fore, all parameters are recorded for cases with and

without load balancing.

The timing information for the cases considered is

presented in the form of speedup and efficiency which

are defined in the next two equaUons.

Elapsed Time with 1 Machine (Default)
S, = (8)

Elapsed Time with n Machines

Srl

Efficiency = m _9)
It

where S, is the speedup with n machines. The total

elapsed time for solving the test case using the default

communication scheme in the N'PARC codes is used

as a basis for comparison when speedup is calculated.

Speedup of various communication schemes

6 [I Default' _ /_I:1
5 L I Scheme 1 _ __1

! [Scheme 2 _.....-I =,-_J- I

4El Scheme 3 /.-_--_e _ J

° [l¢' 3 -'<

, \. ,,,__:- • _

0
1 2 3 4 5 6 7 8

Number of Machines

Figure 8. Speedup for the 2-D grid with 4.592 nodes

divided into 17 blocks.

o

LI.I

Efficiencies of various communication schemes
4

3.53 _

2.5

//_". --_ --3.__

0 ' i i

2 3 4 5 6 7 8

Number of Machines

Figure 9. Efficiency for the 2-D grid with 4.592

nodes divided into 17 blocks.

From the results of the 2D case. it is found that it is

8

American Institute of Aeronautics and Astronautics

highly communication bound, and load balancing

yields little improvement in efficiency. Hence, the

load balanced computational speedup is not displayed
here. Also, the choice of communication algorithm

makes a significant difference among the variable

ume-stepping cases. Only the case wtth Scheme 3

shows linear speedup as the number of machines in-
Ct'eases.

Speedup for various communication schemes
18

16

14

o_ 12
73

-_ 10

8
O..

6

1 2 3 4 5 6

Number of Machines

Default ---c----

Scheme I --o--

Scheme 2 ---er-
Scheme 3

Default (DLB}

Scheme 1 _DLB}

Scheme 2 !DLB)

Scheme 3 tDLB)

Figure 10. Speedup for the 3-D grid with 50.950
nodes divided into 16 bltx:ks.

e--
®

ILl

Efficiency of various communication schemes
4

3.5

3

2.5

2

1.5

1

0.5

0

_

2 3 4 5 6 7

Number of Machines

Default

Scheme 1 ----o--

Scheme 2
Scheme 3

Default (DLB)

Scheme 1 (DLB)

Scheme 2 (DLB)

Scheme 3 ¢DLB_

Figure 11. Efficiency for the 3-D grid with 50.950
nodes divided into 16 blocks.

25

20

15
"O

_- lO

Speedup for various communication schemes
!

•_'.... L_

t

1 2 3 4 5 6 7 8 9 10

Number of Machines

Default -----E---

Scheme 1 --.o---

Scheme 2

Scheme 3

Default _DLB_

Scheme 1 _DLB) --o---

Scheme 2 [DLB)

Scheme 3 kDI.B_

Figure 12. Speedup for the 3-D grid with 240.000
nodes divided into 20 blocks.

o
r-

IdJ

4

3.5

3

2.5

2

1.5

1

0.5

0

Efficiency of various communication schemes

_ _
'----"-.---.-_ --I- • 1"

i i

2 3 4 5 6 7 8 9 10

Number of Machines

Default

Scheme 1 ---.-o---

Scheme 2

Scheme 3

Default (DLB)

Scheme 1 (DLB)

Scheme 2 (DLB)

Scheme 3 (DLB)

Figure 13. Efficiency for the 3-D grid with 240.000
nodes divided into 20 blocks.

The 3D cases show a much higher speedup as number

of machines increases compared to the 2D case. Also,

the load balancing improves the speedup and efficien-

cy by an additional 15-25 percent for most cases.

Next, the pressure response to the sinusoidal tempera-

ture perturbation is plotted for the two monitoring sta-
tions. As can be seen from the figures, all three

schemes preserve good time-accuracy with respect to

the globally uniform time-stepping case.

9

American Institute of Aeronautics and Astronautics

-j
o_

¢..

e--

O...

Pressure ResDonse at x/rc=4.08

0.005 0.01 0.015 0.02 0.025 0.03 0.035

Time in Seconds
Default -- Scheme 2

Scheme 1 Scheme 3 -

Figure 14. Pressure

t--

response at station 8
(X/Rc=4.08) to a 5% sinusoidal inlet

temperature perturbation.

Pressure Response at xJr_5.01

E.

¢..

-_=
0..

14.4

14.3

14.2

14.1

14

0.005 0.01 0.015 0.02 0.025 0.03 0.035

Time in Seconds
Default Scheme 2

Scheme 1 Scheme 3 --

Figure 15. Pressure response at station 10
(X/Rc=5.01) to a 5% sinusoidal inlet

temperature perturbation.

Conclusions

The 2D/axisyinmetric and 3D versions of NPARC

have been parallelized and enabled for dynamic load
balancing. A variable time-stepping block solution al-

gorithm is implemented in addition to various com-

munication schemes and their efficiency is explored

with the help of three test cases. The combination of

the variable time-stepping approach and the commu-
nication schemes are shown to be time accurate for

unsteady computations. Significant savings in total

elapsed time can be achieved with the developed vari-
able time-stepping schemes when the interface time-

steps and characteristic speeds are considered. The

dynamic load balancing provides additional efficiency

when the problem size increases. The vartable ttme-

stepping tools introduced here can significantly reduce
the cost of solving unsteady perturbation problems

with NPARC codes. The reduction in total elapsed

times is 4-5 times than in constant time-stepping algo-

rithm when large size problems are solved.

Acknowledgments

This research was funded by the NASA Lewis Re-

search Center under NAG3-1577. The authors appre-

ciate the support provided by Rich Blech. Gary. Cole

and Joongkee Chung of Computational Technologies
Branch of NASA LeRC.

References

[1] G.K. Cooper and J.R. Sirbaugh, "The PARC
Code: Theory and Usage." ArnoM Engineer-

ing Development Center TR-89-15, 1989.

[21 H.U. Akay, R.A. Blech. A. Ecer. D. Er-

coskun, B. Kemle. A. Quealy and A.

Williams, "A Database Management System

for Parallel Processing of CFD ,algorithms,"
Parallel CFD '92." Edited by R.B. Pelz. et al..

Elsevier. Amsterdam. pp. 9-23, 1993.

[3] Y.P. Chien, A. Ecer, H.U. Akay, E Carpenter

and R.A. Blech, "Dynamic Load Balancing
on a Network of Workstations for Solving

Computational Fluid Dynamics Problems."
Computer Methods in Applied Mechanics

and Engineering, vol. 199, pp. 17-33. 1994.

[4] N. Gopalaswamy, Y.P. Chien, A. Ecer, H.U.
Akay, R.A. Blech and G.L. Cole, "An Inves-

tigation of Load Balancing Strategies for CFD

Applications on Parallel Computers," Parallel
CFD '95, June 26 - 29, 1995, Pasadena. Cali-

fornia. U.S.A.

[5] H.U. Akay and A. Ecer, "Efficiency Consider-

ations for Explicit CFD Solvers on Parallel

Computers." Proceedings of the International
Workshop on Solution Techniques for Large-

Scale CFD Problems. Montreal, Canada. pp.

289-314, September 26-28, 1994.

10

American Institute of Aeronautics and Astronautics

[61 J. ChungandG.L. Cole,"Comparisonof
CompressorFaceBoundary.Conditionsfor
UnsteadyCFDSimulationsof SupersonicIn-
lets."NASA Technical Memorandum 107194,

ICOMP 96-5, March 1996.

[71 J.K. Chung, "Numerical Solution of a

Mixed Compression Supersonic Inlet Row,"

AIAA Paper No. 940583, 32rid Aerospace

Sciences Meeting, Reno, Nevada, 1994.

11
,American Institute of Aeronautics and Astronautics

Sixth International Symposium on Computational Fluid Dynamics,
September 4-8, 1995, Lake Tahoe, Nevada, USA

Load Balancing Issues in Parallel Computing

. °

A. Ecer*, H.U. Akay*, Y.P. Chien** and N. Gopalaswamy*

*Department of Mechanical Engineering

**Department of Electrical Engineering

Purdue School of Engineering and Technology, IUPUI
Indianapolis, Indiana - USA

ENTRODUCTION

Parallel computation of CI:D problems involves utilization of many processors to solve a

single problem. The efficiency of a parallet scheme generally, depends on allocating the
data on individual processors and managing the communicauon in an efficient manner
since one has to be aware of both computation and communication costs. The problem is
usually simplified into an homogenous form by assuming that the operations on each
processor are identical and the load is distributed evenly among identical processors. In
computational fluid dynamics, this is similar to solving a problem on a square grid where
the difference operator, the solution scheme, the grid size and the machines are the same
for all processes. In this case, the load balancing problem is equivalent to dividing a
given problem into a given number of equal tasks. In the solution of complex three-
dimensional problems, however, the issues are quite different. The grid spacing around
an aircraft may vary several orders of magnitude with appropriate stretching. To pick up
a boundary, laver or the leading edge separation, much finer grids may be required in
comparison w{th the inviscid freestream. The stability, requirements for computing with

such grids may vary considerably over the entire flow field. Time-accurate solutions of
such problems also require a wide range of time-integration steps since the unsteadiness
may vary. both in time and space. When the problem is described in the above fashion,
the definition of parallel computing has to be generalized since the allocation of the data
to individual processors depends on the resources available on each processor, as well as
the [evet of computations required for the particular subset of data. If the subset is
def'med as a collection of gr_:d points, the local refinement of the grid and the local
characteK, s_dcs of the flow dictate the allocation of such data to an individual processor.

While for serial algorithms, the elapsed time is simply a summation of allcomputational
costs, for parallel algorithms the elapsed time is controlled by the bottlenecks due to
information exchange between the processes. Thus, the efficiency of an algorithm
strongly reiates to detecting and eliminating bottlenecks. For this reason, load balancing
becomes critical for solving large CFD problems. In order to propose solutions to these
problems, the present authors have devised a dynamic load balancing technique which
dynamically takes into account: 1) computational effort in each processor, 2) inter-
communication loads, 3) presence of other users on each processor, and then periodically
redistributes the loads for better efficiency as needed [1,2]. In this paper, we summarize
our recent experiences with the coupling of explicit CFD algorithms and a dynamic load
balancing strategy on network of computers.

PARALLEL CFD ALGORITHMS

For the parallel CFD algorithms we have studied so far, the computational domain is
divided into a number of subdomains called solution blocks [3,4.]. Each block consists of

a set of grid points and theirconnectivity. Also, each block is associated with the

neighboring blocks through a group of grid points called interfaces. An interface
includes allthe gridpointsrequiredto definethe connection of two neighboring blocks.
An interfaceis duplicatedand stored on both processors where the two neighboring

blocks are stored (Figure I). For pseudo time-integrationsof the nonlinear set of

equations in steady flows or real-timeintegrationsin unsteady flows,the solutionblocks
arc solved using an explicitscheme. Any computations on a block are communicated to
its interfaces. An interface decides when to communicate with its identical twin on the
other block. When an interface receives information from its twin, it updates the block it
is attached to. Thus, during the computation process two basic decisions are made: 1)
when to compute in each block and 2) when to transfer data from one interface to its twin.
In general, each block and interface will have different requirements depending on the
local flow conditions and grid refinement.

The algorithms thusdescribedare very suitableforparallelcomputations on distributed

multi-usersystems such as workstationnetworks. For parallclizationwe have developed

a grid-based paralleldatabase program, GPAR [3,4],which utilizesportable parallel

libraryroutinessuch as PVM [5]and APPL [6].Using GPAR, a CFD user-programmer
needs to code only a block solver and an interface solver without being concerned with

parallel computing primitives such as send, receive, wait, etc. This database program and
its applications were presented elsewhere, see e.g., [3,4,7]. Depending on the size of the
problem and the availability of computers, the solution blocks are typically distributed to
several processors on the network. Each solution block is treated as a separate process
while each processor may handle one or more of such processes.

Our experience with such systems has shown that the total elapsed time for these
calculations is a function of:

1. Size of each solution block.
2. Size and number of interfaces.
3. Balance in size of solution blocks and interfaces.
4. Number of times the exchange of interface information is needed.

5. Speed and memory of each machine and non-heterogeneity of the system.
6. Change of loading on each machine at a _ven time.

When studied in detail, it becomes apparent that the above problem is not static. The
computer resources may vary over a computer run of many hours. Also, the
computational requirements for a block may change due to changes in local flow
conditions.

DYNAMIC LOAD BALANCENG

Although balancing the size of solution blocks and interfaces is usually under the control
of a user, for complicated geometries this may not be readily achieved and may require
extra amount of effort. What is not at user's control in multi-user/multi-task
environments is the change of loading on each machine during executions. To alleviate

such problems, we developed a high-level load balancer which is intrinsically connected
to the database program GPAR and the corresponding CFD application code. The load
balancer computes the computational cost of block and interface solvers, including the
communication costs, and distributes the load into available computers. It also

periodically checks the loading of each processor and redistributes the loads if significant
load unbalances are detected during the parallel computations due to change in loading

status of processors [1,2]. The following steps are to be performed when a parallel CFD
code is used with the present dynamic load balancing algorithm:

2

i. A computationalgrid is generatedin theform of blocks and interfacesandstored
in thedatabase.

2. Eachblock is assignedto ablock solver which solves the equations for each block

and also updates its interfaces.
3. Each interface is assigned to an interface solver which scnds the information to its

twin interface which belongs to the neighboring block (l_gur¢ I).
4.. Blocks are distributed among the existing processors along with their respective

interfaces.

5. Program is executed and computation time of each block and execution time of
each interface are recorded.

6. Based on the recorded data, a load balancing is performed to distribute the given

problem to available processors in a most efficient manner.
7. Steps 4 through 7 axe repeatedperiodicallyto includethe changes in theproblem,

the solutionalgorithm and computer conditions.

NUMERICAL ENTEGRATIONS EN TIME

In this paper, an explicit time integration technique is chosen to demonstrate the concept
of load balancing. The stability requirements of such schemes are usually defined in
terms of a CFL number. For example, for the scheme to be stable, the limiti.ng time step

is directly proportional to the element size and inversely proportional to the local
velocity.. Hence, the flow regions with denser grid distributions and higher velocities are
severely penalized. This severe restriction makes the solution of large problems

prohibitively time-consuming even after paralletization. However, it is possible to further
improve the computational efficiency by exploiting the parallel data structure of the

proposed algorithms as described in the following sections.

Block-Based Variable Time-Stepping Strategies

If a group of grid points is identified as a block, the CFL condition (i.e., Courant number)
suggests that the rime integration step for that block is dictated by the grid point with the
highest CFL number in that block. As we divide the entire grid into a larger number of
blocks, we have the opportunity to utilize the most efficient time step for each region.
For instance, we do not wish the leading edge of an airfoil to dictate the integration time

step for the entire problem. The flow regions with denser grid distributions and high
velocities are severely penalized. Although increasing the number of blocks decreases
the block solver rimes, it increases the relative importance of communication times. To
overcome this difficulty, we proposed using time-steps which vary with time based on a
rule in each block independendy to meet the condition set by the CFL number. While the
blocks advance in time with different time steps decided by the Courant number, interface

information exchange is made whenever needed and the missing information is calculated
by linear interpolations within a time step. The rule used in selecting the time steps is

based on using a minimum preset value Ate,, and an integer k such that the time step

used in each block m at a time step n is calculated from:

where, in each block the variable time step At_ is calculated from the CFL condition.

An upper limit on the integer multiplier k is needed (e.g., 5) to minimize the interpolation
errors at the interfaces. Exchange of interface information selectively only when needed,

instead of at every. At_a,,, significandy improves the efficiency of overall calculations.

o.

Zonal Solution Strategies

One may also use a zonal approach for which a complete Navier-Stokes solver is used
only at selected flow regions for effi_ency purposes. Some blocks may be treated as
inviscid while others as viscous. Thus, solution time for each block may not only be a

function of number of grid points but also the solution algorithm utilized for the specific
block. Based on the above considerations, one can define a time step locally for each

block and solver for improving efficiency. Such a procedure may also be extended to

zones with potential, Euler and Navier-Stokes solvers combined with the load balancer.

Interface-Based Variable Communicat_n Strategies

Since the communication cost is still the critical factor in parallel computing, one can
obtain considerable efficiency by selectively sending the interface information based on
the direction of the flow at the interfaces. For instance, if the flow is supersonic the

upstream block sends messages to downstream but does not need information from the
downstream block. When the flow is subsonic, the speed and hence the frequency of
information exchange are different in upstream and downstream directions. This way,
one can optimize communication costs by studying the flow conditions and grids at the
interfaces. Again this process is dynamic and depends on the local flow conditions.

BENCHMARK STUDIES

The problem considered in this paper is the flow through an axisymmetric engine inlet as
shown in Figure 2 (see e.g., Chung [8]), where we divided the flow re,on into seventeen
blocks. Each block contains between 8,000 and 10,000 _rid points. The flow is
supersonic in most reg-ions except in blocks 9-11. The PARC2D unsteady flow code [9],
which was parallelized via GPAR, was used for the test cases.

Example 1 Load Balancing

This case iUustrates the basic functions of the load balancing program. Shown in Figure

3 is a typical load balancing sequence which may occur in a multi-user heterogeneous
environment. Initially seventeen blocks were distributed among four machines. The
loads were monitored by the load balancing program periodically at each cycle of

computations, where one cycle in this case is equal to 800 time steps of unsteady
integrations. As may be observed, a sudden change in the loading of one of the machines
was detected at seventh balancing cycle, after which the load balancer redistributed the
loads for a better performance. The new distribution was dynamically determined from
the measured computational and communication costs and the cost calculation formulae
of the balancing program. Similar situations happen at later cycles too. Each time the
load balancer program corrects the problem.

Example 2 Zonal Approach

This case illustrates the effects of zonal approach where certain blocks in the flow zone
are switched from an Euler to Navier-Stokes solver (blocks 12-17). As may be observed

from Figxxre 4, following the switch of the solvers at balancing cycle 6, the load balancer

improves the efficiency by redistributing the solution blocks.

Example 3 Interface-Based Variable Communication

This case illustrates the obtained savings in elapsed time when communications are made

4

selectively at supersonic interfaces. Figure 6 shows the savings when the information in
supersonic blocks is passed only from upstream to downstream direction after the
balancing cycle 5. It is to be noted that an unexpected load increase on the system which
happened at cycle thirteen was later corrected by the load balancer.

Example 4 Block-Based Variable Time-Stepping

This case illustrates the effects of the block-based variable time-stepping algorithm and
communication costs. Shown in Figure 6 are the efficiency curves of variable time-

stepping algorithm compared with the constant time-stepping. While there is a severe
drop in efficiency after seven machines are used in the case of constant time-stepping, the
same drop in efficiency takes place only after fourmen machines when the variable time-
stepping plus variable communication algorithms are used.

ACKNOWLEDGMENTS

This research was supported by NASA Lewis Research Center under grant NAG3-1577.

Computer accesses provided by NASA and IBM are gratefully acknowledged. The
authors thank S. Secer of IUPUI's CFD laboratory for his assistance on the

implementation of the load balancing algorithm.

REFERENCES

-_ 1. Y.P. Chien, A. Ecer, H.U. Akay, F. Carpenter and R.A. Blech, "Dynamic Load
Balancing on a Network of Workstations for Solving Computational Fluid Dynamics
Problems", Computer Methods in Applied Mechanics and Engineering, vol. 119, pp.
17-33, 199,1.

..'e 2. Y.P. Chien, A. Ecer, H.U. Akay and R.A. Blech, "Environment Requirements for

Using Dynamic Load Balancing in Parallel Computations," Proceedings of Parallel
CFD "94, Edited by A. Ecer, et al., Elsevier, Amsterdam, 1995.

3. H.U. Akay, R. Blech, A. Ecer, D. Ercoskun, B. Kemle, A. Quealy and A. Williams,
"A Database Management System for Parallel Processing of CF'D Algorithms,"
Parallel CFD '92, Edited by R.B. Pelz, et 3.1., Elsevier, Amsterdam, pp. 9-23, 1993.

,1. A. Ecer, H.U. Akay, W.B. Kemle, H. Wang, D. Ercoskun and E.L Hall, "Parallel

Computation of Fluid Dynamics Problems," Computer Methods in Applied
Mechanics and Engineering, vol. 112, pp. 91-108, 1993.

.2,," 5. G.A. Geist, A.L. Beguelin, J.J. Dongarra, W. Jiang, R. Manchek and V. Sunderam,
"PV3,! 3 User's Guide and Reference Manual," Oak Ridge National Laboratory,
OPaVLq'M-12187, 1993.

6. A. Quealy, G.L. Cole and R.A. Blech, "Portable Programming on Parallel/Networked
Computers Using Application Portable Library (APPL)," NASA Technical
Memorandum, 106238, 1993.

7. H.U. Akay and A. Ecer, "Efficiency Considerations for Explicit CFD Solvers on
Parallel Computers", Proceedings of the International Workshop on Solution
Techniques for Large-Scale CFD Problems, Montreal, pp. 289-31,1, September 26-
28, 199,1.

8. J.K. Chung, "Numerical Solution of a Mixed-Compression Supersonic Inlet Flow,"
AJAA Paper No: 940583, 32nd Aerospace Sciences Meeting, Reno, Nevada, 199,1.

9. G.K. Cooper and J.R. Sizbaugh, "The PARC Code: Theory, and Usage," Arnold
Engineering Development Center, TR-89-15, 1989.

I I

Block

Figur¢ 1. Blocks and overlapped inmrfac.¢s. Figure 2. Block s_dctuI, used for an engine
inlet problem.

.y,

...=

.<

, 1 i--l _ _=_1 T-_...'_...

t-i

I I / I I

Nmzmcr of B_,'- CTd.es

Hgur¢ 3. Load balancing in a malti-aser and
heterogeneous envix_nmenL

f
,r
_ t

,--_---_'_-'_==i
........ o. _,., _ o--, J

• ' I " _ ,

Yumc¢r o_ BM,_ C7¢1.'t

F'igur_ 4. Zonal solvers coupled with load
balancing.

2

_-- |.a

r,rtgtl_ tlJ=l_O

 j|l ||
7

/

Number of na_ Cyc_

_P

I
_P

Figure 5. Interface-based var_lc

communication coupled with load balancing.

Figur_ 6. Effect of variable dine.stepping and
variable interface communication algorithms.

6

Repclntedfrom

Computer methods
in applied

mechanics and
engineering

Comput. Methods Appi. Mech. Engrg. 119 (1994) 17-33

Dynamic load balancing on a network of workstations for

solving computational fluid dynamics problems

Y.P. Chien_'*,-A. Ecer _, H.U. Akay a, F. Carpenter _, R.A. Blech b
• Purdue University, School of Engineering and Technology at Indianapolis, 723 W. Michigan Street, Indianapolis, IN 46202,

...... ._= USA ,,

_hlASA Lewis Research Center, Cleveland, OH 44135, USA

Received 24 November 1993

Revised manuscript received 3 March 1994

ELSEVIER Comput. Methods Appl. Mech. Engrg. 119 (1994) 17-33

Computer methods
in applied

mechanics and

engineering

Dynamic load balancing on a network of workstations for

solving computational fluid dynamics problems

Y.P. Chien a*, A. Ecer a, H.U. Akay a, F. Carpenter a, R.A. Blech b

"Purdue University. School of Engineering and Technology at Indianapolis, 723 W. Michigan Street, Indianapolis, IN 46202,
USA

bNASA Lewis Research Center. Cleveland, OH 44135, USA

Received 24 November 1993

Revised manuscript received 3 March 1994

Abstract

Distributed computing on a network of computer workstations is being considered as a practical tool for parallel CFD
applications. Presently, workstations are commonly arranged in the dedicated, single-user mode for executing such computations.
Since workstations are generally employed in a multi-user environment, running the workstations in the dedicated mode causes
scheduling problems for system administrators and inconvenience to other users. A methodology is presented in this paper for
dynamic balancing of the computation load on a network of multi-user computers for parallel computing applications. In order to
distribute the computation load in a multi-user environment, it becomes necessary to determine the effective speed of a multi-user
workstation to a parallel application. In the present approach, it was assumed that (i) multi-user and multi-tasking networked
computers may have different computation speeds. (ii) application data can be divided into many small data blocks with possibly
different sizes. (iii) a process is assigned to each block, and (iv) the number of computers is much less than the number of
processes. The developed dynamic load balancing procedure uses the greedy method for optimizing computation load
distribution. Due to dynamic changes of the computer loads in a multi-user and multi-tasking environment, the loads on
computers are periodically examined and parallel application processes may be re-distributed to reduce the computation time.
The developed method has been tested on two computer clusters and its applicability has been demonstrated for two case studies.

1. Introduction

Solution of large CFD problems requires access to large computer systems. In the past, supercompu-

ters were utilized to solve such problems where vectorizing was the main tool for speed improvements.

Presently, parallel computers are being considered to treat such problems in terms of obtaining higher

computational speeds and solving larger problems. The development of parallel computers during the

last decade has progressed mostly towards developing tightly coupled systems. Whether a parallel

computer is configured as a SIMD or MIMD, an expandable, yet fixed configuration, was proposed.

This resulted in the development of computers with many processors which communicate with each

other in a prescribed fashion [1, 2]. These developments have been mostly of an experimental nature

and parallel supercomputers are only been realized during that last couple of years [3]. Access to 512 or

1024 processors are being made possible to researchers to solve large CFD problems. The term

'massively parallel' is being realized as such systems are being assembled.

After experimenting with the present parallel supercomputers, one can make several observations:

• These computers have been developed up to a level exceeding the performance of older

* Corresponding author.

0045-7825/94/$07.00 (_) 1994 Elsevier Science S.A. All rights reserved
SSDI 0045-7825(94)00074-3

t_).P. (-+hwn et ai (.'ompu_,. .%lct_:zo_zs Appt. .%h'ciz. Ltl_,,rg. +'i'+ +i'+u4J ,--.'.:

supercomputers. It seems possible that much larger systems can be put together at a reduced cost
in the near future.

• Although attempts are being made to provide a virtual environment where the communication

between different processors is not visible to the user, the communication cost is still an important

factor for most of the applications.

• Many existing software packages are not suitable to work in a parallel environment. Usually it is
costly to convert or there is not sufficient interest to justify the cost of conversion.

• Since these machines are still at the development stage, changes are being made rather rapidly.

Therefore, only a few specific production codes are running on these machines at this time.

Also. during the last decade the development of UNIX workstations has attracted considerable

attention. A large amount of scientific .-omputing previously performed on main frames has been

shifted to workstations. The wide popularity of such hardware has driven the costs down. Many

organizations have already purchased a number of workstations which have brought forward the

possibility of a network of workstations as a cost effective means to parallel computing. The use of

distributed workstations for parallel computing has drawn significant interest from the research

community, mainly due to the potential for high performance. It has also drawn interest from the

management community, which looks to this new technology as a means to significantly reduce

computing costs. These different objectives are causing some confusion.

The 'performance' seekers are driving the dedicated cluster approach. This has promoted in-

vestigations into more efficient communication software and high performance networks. Performance

seekers will try anything to acquire more computing power. They will even write their own load-

balancing schemes (static or dynamic) into their codes. The 'efficiency' seekers are driving the

scheduling/load balancing software development. This software is meant to keep as many machines as

possible as busy as possible [4]. Traditionally, this has been done through scheduling multiple

single-processor jobs. The situation is complicated with the addition of parallel jobs, Scheduling/load

balancing software primarily meant to 'capture idle cycles' could conflict with applications developed to

achieve high performance. However, some of the load balancing techniques built into this software

(task migration, checkpointing) could be useful to applications seeking performance. The key is to have

schedulers/load balancers which are flexible enough to recognize and support both situations. The

distributed network could be viewed as multiple 'clusters', where a cluster could consist of only a single

workstation or multiple workstations.

A network of loosely-coupled, multi-user workstations for solving large problems requires answers to
further questions. If one compares a network of loosely coupled workstations to existing parallel

machines, one can make the following observations:

• A user can access to much larger memory on the existing workstations (256 to 512 Mbytes per

processor).

• The communication between the workstations is still being improved at this time.

• A system of loosely-coupled networked workstations has more possibilities in terms of expandabili-

ty, yet it is much more difficult to schedule and load balance parallel applications than a

tightly-coupled parallel machine.
• A system of loosely coupled networked workstations is dynamic. The number of available

workstations and their load may change day-to-day.

• The network of workstations is suitable for a multi-user environment. The variety of resources on

such a system enables efficient utilization bv several users simultaneously. This is quite different to

users sharing a single computer which was the supercomputing environment of the last two
decades.

• Software development on networked workstations prevents the software package from becoming

machine dependent. The present parallel supercomputers require specific software tools for

improving the efficiency of their particular systems.

Based on the considerations listed above, our work on parallel computing has been directed towards

the utilization of a network of loosely coupled workstations. We consider a network of multi-user UNIX

workstations as our basic system. For solving large CFD problems on such a system, we try to answer

the following questions:

I

Ioo

we

bal
km

pe_
util

par

o

mt

bit

da

tht

In

pr,

Y.P. Chien et al Comput. Methods Appl. Mech. Engrg. 119 (1994)17-33 19

_.cost

ation

)rtant

_' it is

--._idly.

rable

-- been

_,lany
t the

,se of

earch

q the

_ :duce

d in-

_ lance
load-

- the
leS as

.ltiple
/ load

,ed to

tware
have

The

-- single

2rs to

-- trallel

2s per

diane

ces on

ent to

--,t two

oming
_ Is for

,wards

_ UNIX
tnswer

• How can we distribute a large CFD problem over a network when sharing resources with other
users?

• How can we utilize a network of heterogenous UNIX workstations with different brands and

models'?

• How do we develop parallel algorithms and computer codes without knowing the details of such a

complicated computer network?
• How can we maintain 'high performance computing' in such an environment?

In this paper, we describe a dynamic computer load balancing methodology suitable for a network of

loosely-coupled workstations. In order to maximize the utilization of computing power of the network,

we assume that the network supports the multi-user environment. In order to support the load

balancing tasks for a variety of parallel, portable CFD application codes, we do not require the detailed
knowledge of the parallel code for load balancing. The dynamic load balancing is based on the on-line

performance measurements of a given CFD code on existing network of heterogenous workstations. By

utilizing the developed methodology, one can ensure the scalability, portability and the efficiency of a
parallel algorithm on a given network.

2. Background

One can develop parallel CFD algorithms by parallelizing the access to data at different levels. Our

experience with MIMD machines has been based on parallelizing the CFD algorithm and duplicating

the same algorithm on different processors [5]. In parallel CFD, one simple strategy is to divide the

computational grid into a series of blocks and perform parallel computations on each of these blocks.

Again, a simple approach is to divide the data into the same number of blocks as the number of

computers or processors used for processing such data. Examples of blocking the data to fit a given

number of processors can be found in literature [6-8]. Computer load balancing using these methods is

achieved by varying the sizes of the data blocks. These methods simplify the load balancing problem by
assuming that there are no restrictions on how the data can be divided into blocks and the computing

environment is static. However, they may become complicated when there are restrictions imposed on

data blocking and the computers are in the multi-user mode.

To develop a general yet efficient computational environment for parallel CFD on a network of

multi-user workstations, we proposed to arrange the data into a large number of data blocks where each

block corresponds to an assembly of grid points. We first developed the methodology for managing such

data efficiently on a network [9]. We then defined load balancing in terms of optimum allocation of

these blocks to different processors where the number of blocks exceeds the number of processors [10].

In this paper, we extend this discussion to dynamic load balancing. To introduce further details of the

procedure, we formulate the problem based on the following assumptions:
(1) A set of m multi-tasking, multi-user networked computers are used.

(2) Computation speeds of computers may be different.

(3) There is a program (,grid divider) to divide the original data into a set of n small data blocks

D = {d, [i = 1..... n }, where d i is data block i and n > m. The data can be cut into blocks with

preferred sizes and geometry. Each data block is associated with the description of the shape of
the block, the number of nodes and elements in the block, the number of interfaces of the block

(see Fig. 1), the block numbers of its neighboring blocks, and the data to be exchanged with its

neighboring blocks. (Usually, this grid divider is executed only once in the beginning. One can

later combine two small blocks into one. This is much simpler than further dividing blocks into
smaller pieces.)

(4) The parallel CFD algorithm is characterized by two components: computations for each block
and communications between neighboring block interfaces. Block computation component

includes the computation instructions for all the grid points in a single block while the block

interface communication component consists of the instructions for interface data communication

and processing. The computation time used for a CFD problem depends on the complexity of the

computational component of the CFD code and the number of grid points in the data. The

20 Y.P. Chien et al. / Comput. Methods Appl. Mech. Engrg. 119 (1994) 17-33

Bi Uj Bj

Bi = Solution domain of i-th block

lij = Interface between blocks i and j

Fig. 1. Definition of blocks and interfaces in the solution domain.

communication time for an interface depends on the complexity of the communication com-

ponent and the amount of information to be exchanged between the neighboring blocks.
(5) Since the effective computational speed of a computer to a user in a multi-user environment

changes dynamically, processing time for the same data on different computers and communica-
tion time between different pairs of computers vary with time.

(6) In optimal computer load balancing, the cost is represented in terms of the total time elapsed

during the program execution.

We define the following parameters to describe the cost of computing:
: (subscript denotes the(1) The computation cost for processing of data block a on computer j be c_

data block number, superscript denotes the computer number).

(2) The communication cost for sending all required information of adjacent data blocks from

computer j to computer k be u j_.

(3) The computation of a data block cannot be completed until the interface data from adjacent
blocks are obtained. The cost of using computer j to process all data blocks on computer j is

J_ is the cost of collectingC _ = _ (c_ + uJak + W_) for all data blocks d, on computer j, where u_

required data from all computer k to computer j in order to process d_, 1 _<k <_ m, and W is the

elapsed time during which block a is waiting for interface data from adjacent blocks to become
available.

Hence, the optimal load distribution task for parallel computing is to minimize the maximum of the

execution costs for all computers. This is equivalent to the following statement

minimize C = max(C i) forall 1 <<-j<_m.

When a network of computers are in the dedicated mode (single user mode), the cost functions reflect

the hardware specifications of the computer and is static. When computers operate in a multi-user
mode, the cost functions to a specific problem change dynamically depending on the extraneous load on

the computers.
We have previously reported the development of a static computer load balancing method [10] based

on the greedy algorithm [11] for solving parallel CFD problems on a dedicated network of workstations.

Before describing the extension of this static load balancing method to the dynamic load balancing in a
multi-user environment, we first summarize the method. In static load balancing, we first find the

computation and communication cost functions (measured CPU time used for computations with

respect to the number of nodes in a block processed per time step) based on several trial executions of
the code. These time measurements can be easily implemented once a CFD code is expressed as a

combination of block and interface solvers (shown by time stamps in Fig. 2). Computations for the grid

points occupying a block is performed inside the block solver. All communications between the

neighboring blocks are in the interface solver. The static load balancing method is used to direct the
simulated movement of data blocks among the computers until the cost cannot be reduced further. The

block diagram of the static load balancing procedure is depicted in Fig. 3. This procedure generates a
near minimum cost load distrubtion on all computers. The computational cost of the static load

Y.P. Chien et al. / Comput. Methods AppL Mech. Engrg. 119 (1994) 17-33 21

com-

lment
anica-

apsed

es the

from

lacent

- zr j is

ecting
is the

-- .'come

of the

reflect

ti-user

_)ad on

based

ttions.

_g in a
id the

with

ons of

Jasa

e grid
-n the

ct the

r. The

- ates a

: load

Time Stamp #1 _
r

Block

i Solver #1
I

Time Stamp #2 _
1,

[
Interface

, Solver #1

Time Stamp #3 _ i
T

i i
Block I

; Solver #2 1
L

Time Stamp #4 _ !
Y

I

i .,terfacer
i Solver

Time Stamp #5 _ = '

, Yes

Types of Time Stamps:

- CPU "lime (tsc)

- Elapsed Time (tse)

Computation CPU Time =

(tsc2- tscl). (tsc4. Lsc3)

Computation Elapsed Time =
(tse2 -L_I) + (tse4 - tse3)

CommunK:ation CPU _me =

(tsc3 - tsc2) + (tsc,5 - tsc_)

Communication E_apsed Time =

(tse3 - tse2). (ts_ - tse4)

Fig. 2. Flow chart of FLOW3P with time stamps.

balancing method for both the best case and worst case situation is proportional to mn 2, where n is the

number of blocks and m is the number of computers. After the method generates a balanced block

distribution, the block and interface data are distributed accordingly and the CFD code is executed.

3. Dynamic computer load balancing

In a multi-user environment, computer load can change dynamically since other users can start new

processes anytime. Consequently, the effective computational speed of a computer to a user changes
dynamically. In this case, it becomes unsatisfactory to rely on a static load balancing algorithm. Fig. 4

shows the variation of the CFD code execution time on a initially statically load balanced network of
workstations due to the load change on only one of the workstations. An unbalanced load distribution

on computers causes the processing time of certain blocks to be much longer than that of the other

blocks on other computers. Since the solution time for the entire problem depends on the slowest

process, the computation time can increase drastically whenever the loads are not balanced. It is

obvious that we need to periodically examine the progress of the code execution and re-distribute the

data blocks if necessary. In order to do so, we have implemented a dynamic load balancing loop which
contains the following four steps:

(1) Obtain reliable computational cost information periodically during the code execution.

(2) Obtain reliable communication cost information periodically during the code execution.
(3) Determine the cost functions based on the collected cost information.

(4) Re-distribute data blocks to computers to achieve load balancing.
In the following, the implementation of these steps are described.

¢

22 Y.P Chien et al. Comput. Methods AppL Mech. Engrg. 119 (1994) 17-33

L

Findcomputationand
communication costs on each

computer based on past

performance

Find cost change of moving each
block to other computers

i Move the block that produces the t

most savings I

Fig. 3. Block diagram of the dynamic load balancing algorithm.

3. I. Determination of the dynamic computation cost function

In a dynamic environment, the computational cost of solving a given number of blocks on computer

j, C i, is a function of four parameters: (i) the computational complexity of the algorithm, (ii) the speed

of the computer, (iii) the total number of grid points processed by the computer, and (iv) the total

number of active processes on that computer. Since the time complexity analysis of a CFD program

only provides a loose relationship between the number of grids points and the computation time, it does

not provide an accurate timing information. Besides, it becomes difficult to gather the speed

information for a variety of computers used for executing different size blocks. To avoid calculating the

computational cost based on the complexity of the algorithm and on unreliable computer speed

20 7

E
s_

4

0 100 2oo

Time Step

3O0 40O

Fig. 4. Variation of total elapsed time for a statically load balanced case for FLOW3P.

Y.P. Chien et al. ,' Comput. Methods Appl. Mech. Engrg. 119 (1994) 17-33 23

-- nputer
speed

total

-- ogram
it does

speed

-- ing the

speed

information, we calculate the computational cost functions for all computers periodically, based on the

timing data measured during the execution of the CFD code on the existing system.
In the static load balancing method, we obtained the computation cost function by directly

interpolating the measured CPU time per time step for each data block (Fig. 5). However, this

approach is not appropriate for multi-user environments, when there are extraneous processes on the

computer. In this case. one has to consider the total number of processes, as well as the CPU time of

the process for a given block. We have tried several ways to find a reliable computational cost function
for dvnamic load balancing for the multi-user environment. Here, we include the failed attempts to our
discussion since we believe they also provide useful insight to dynamic load balancing.

The first approach, for obtaining the dynamic computation cost function, was to interpolate the

measured elapsed computation time per time step for all data blocks. This approach intuitively

appeared to be reasonable. However, we were not able to calculate the Computational cost on each

computer bv simply adding the elapsed time for computing each block. This was due to the execution of

dependent parallel processes on the computer network. Fig. 6a shows the performance of six blocks on

the slowest processor. In this case, when the block solvers start at the same time since all necessary

interface information is already received from the neighboring blocks. Elapsed block solver time is the

same when all six processors are running simultaneously. In Fig. 6b, the same information is presented

for a fast processor. The elapsed block solver time depends when each block receives the required

interface data to start block computations. We abandoned this approach, since we were not able to

perform load balancing with a cost function based on elapsed computation time.

The second approach for determining computation cost function was based on finding a relationship

in terms of CPU time. We also had to consider the number of concurrent processes on the system. All

CPU bound user processes should be waiting for CPU time on the same CPU queue with equal priority

on the UNIX system. The share of CPU time for all of the parallel processes of an application is then

proportional to the percentage of number of processes for the application in comparison with all of the

processes running on that computer. Therefore, the elapsed time used by a single block on a computer

can be calculated by multiplying the sum of the measured CPU time for all the blocks by the percentage

calculated above. When there are no extraneous processes, elapsed time of a single block is equal to the

sum of CPU time measured for all the blocks on the same processor. Several UNIX commands were

used to determine the number of total processes on a computer but results were not as expected (e.g.

the total number of processes running on the computer was usually less than the known number of

blocks on that computer). Based on many trials, we observed that, similar to the first case, when all

processes on computers are mutually independent, this approach works well. When the processes are

mutually dependent, this approach did not work due to the difficulty in measuring the number of total

processes on each computer.

_ "t:J

_'.2,

2.30 -

2.25 "

2.20 =

2.15

/J

_ /i ¸/ '(

2.10 2

2.05

] J Comp Cost = 0.I59 *. 0.000880 " Block Size
4 x - -

2.00 ix ,

2100 2150 2200 2250 2300 2350 2400

Block Size (Nodes)

Fig. 5, Approximation of computation cost function from CPU time 165 000 node FLOW3P case on LACE).

24 Y.P. Chten et al. _ Comput. Methods Appl. Mech. Engrg. I19 (1994) 17-33

a

25

26

= 27
Z

29
o

3O

Elapsed Time Stamps for 1 Time Seep
tn

,. ':...,. :.:-...:....,.::L.--:. m ::::::::::_:_ _-:_ :....... :, .1

_ b n I I _ u T r] ; I _ i

Block Solver #1

• Interface Solver #1

171 Block Solver #2

[] Interface Solver #2

0 5 10 15

Elapsed Time (Seconds)

20 25

b Elapsed Time Stamps for 1 Time Step

k,

Z
t_
t_

&)

0

10

12 '":"i"

]';, .c-,:;- I

ii

,,,i,,,,[_,,_1,_,,i,,,,i

0 5 10 15 20 25

Elapsed Time (Seconds)

Fig. 6. Time history of two sets of blocks on (a) a heavily-loaded computer and (b) a lightly-loaded computer on LACE.

The third approach was based on the lessons learned from the above experiments. Since parallel

computation of many blocks are inherently mutually dependent and since they cause problems in

counting the number of processes, we exclude them in counting the number of processes on one

computer. We only count the number of independent processes for each computer. A background

process, Process_Tracker, which uses UNIX ps command, is initiated on each computer after each load

re-distribution. Process_Trackers periodically (about 10 seconds in our experiment) count extraneous

independent processes (total processes subtract by the number of parallel application processes) on

each computer and provide the average number of extraneous processes for all the time steps from the

most recent load distribution to the last time step. The total computation cost used by all blocks on a
computer j, C _, can be estimated by

c, (X'= (Ncxtr + Napp)/lVap p

where t_,.cpu is the measured CPU time for block i on computer] per time step, N/app is the total

number of blocks of a given parallel application on computer j, ,Vt¢_'_ is the average number of

extraneous processes on computer j. If there are no extraneous processes, the computation cost of a

block becomes equal to the sum of CPU times of all the blocks on that computer. Since some block

Y.P. Chien et al. ,_ Comput. Methods ,4ppl. Mech. Engrg. 119 (I994) 17-33 25

.ACE.

-- parallel
lems in

on one

"" .ground
ch load

:aneous

,ses) on

_om the

ks on a

ae total

nber of

-- ost of a

_e block

processes finish earlier than others on the same computer due to differences in block sizes, N_pp is
calculated as the total number of grid points of all the blocks on computer j divided by the number of

grid points of the largest block on computer j. Therefore, the dynamic computation cost function of a

computer is the interpolation of the estimated elapsed computation time for all blocks on the computer.
We tested the computation cost function obtained by the third approach and used it as a basis for

dynamic load balancing. The calculated computation time as calculated above was found to be an
accurate estimate of the real life situation as it will be discussed in Section 4.

3.2. Finding dynamic communication cost function

The dynamic communication cost of each data block depends on the size of the interface information.

Since the geometry of everv data block is fixed, the total number of interface grid points of each data

block is known. Due to the fact that the interface message size is a function of the number of interface

grid points, the number of bvtes of information to be sent by each interface grid point can be easily
determined.

The communication cost is also a function of the speed of the communication network, and the

amount of traffic on the computer network. We have tried to use the most recent communication cost

measurement to predict the communication cost in the immediate future. One encountered problem

was due to the fact that the system clocks of different computers may be quite different, which makes

the timing recording for communication cost inaccurate. Since the user cannot adjust the system clock

of all computers on the network, we adopted the following procedure to ensure the accuracy of the
timing measurements.

(1) Find the difference between the clocks of all computers by sending a round trip message from

computer a to computer b and back to a. The message is time stamped each time before it is

sent. Let the transmission time for the round trip message be t d, the clock difference between
computer a and computer b can be calculated as

clockab = stampb - (stampa +/round/2).

(2) During each step, each process sends a message with a departure time stamp taop_,,o, e.
(3) The process which receives the message makes an arrival time stamp ta.,va,.

(4) The communication cost between the two data blocks is the actual data transmission time t_a

which can be calculated by using the following equation

tab = tarriva I -- tdepartur e -- clockab

We experimented with the measurement of communication time on an Ethernet by sending the same
message between two computers many times and observed that the measured communication time

between two computers may vary over a large range (see Fig. 7). However, for a message under 2K

bytes, the average of the measured elapsed communication time per time step on an Ethernet which

was not highly loaded was found to be close to a constant. The results of this experiment is as expected

since (i) the messages sent between computers through Ethernet are grouped in packets, and (ii)
Ethernet assigns the priorities to messages randomly after a collision occurs.

At this time we should note that during our experiments on tightly distributed computational

environmental (such as workstations using a common file server: IBM SP1 at Kingston and Cluster of
RS/6000 workstations at NASA Lewis Research Center), the communication cost between blocks

represented only a small percentage of the cost in terms of the total processing time (less than 2% of
the total computation time). One explanation of this small communication cost is that the application is

two dimensional so that the amount of interface data between blocks is small. The other explanation is

that all nodes use a common file server and are in a local network. Therefore, we can almost ignore the

communication costs in such an environment. However, in a more general loosely distributed

computational environment (network of independent workstations) with a long communication distance

(e.g. literally hundreds of miles away) and for three-dimensional parallel applications, one obviously
cannot ignore communication costs.

26 Y.P. Chten et aL Comput. Methods Appl. Mech. Engrg. 119 (I994) I7-33

0.12 -

=

._ 0.10 -

.... 0.08 -

-='5

_, 0.o6 - , :{

0.04 - _ ×

_ ! : ! _ AverageCommCost/Byte=4.le-5secoads

0.02

9.0 I0 2 10 10 3 L1 103 1.2 i0 3 1.3 103 1.4 103 1.5 10 3 1.6 103

Interface Size IBytes)

Fig. 7. Approximation of communication cost function {FLOW3P case with 6 blocks per computer; 5 computers used with no

load).

3.3. Parallel CFD software environment

In our dynamic computer load balancing experiments, we used a three laver hierarchy built on top of
the UNIX environment (see Fig. 8). The lowest layer is the application portable parallel library (APPL)

developed at NASA Lewis [12]. APPL provides tools for portability on different distributed computers.
The middle layer is a database management library (GPAR) specifically developed for the parallel

computation of problems defined by computational grids [13]. GPAR is built on the top of APPL to
support managing multi-block grid applications on parallel/distributed computers. GPAR supports

structured or unstructured grids within blocks and support different types of block interfaces (matching,

non-matching, overlapping, etc.). The highest layer is the CFD application programs. A CFD program
FLOW3P has been used as a test bed for our load balancing experiments [5]. The flow chart of this

program is shown in Fig. 2. The overall flowchart of the multi-block solver environment with different

application programs is shown in Fig. 9. As can be seen from this figure, other portable parallel parallel

communication libraries can also be utilized as well as other applications by using GPAR. Grid blocking

capabilities and post processing of blocks are additional features of this environment.

The information flow relative to the dynamic computer load balancer is depicted in Fig. 10. The

dynamic load balancer acts as a process controller for a given parallel job. Based on heuristic rules or

the cost functions obtained in the past execution of the CFD program, the load balancer first distributes

FLOW3P Highest Layer

GPAR Middle Layer

APPL Lowest Layer

Fig. 8. Hierarchical environment for parallel CFD computations.

Y.P. Chien et al. Comput. Methods Appl. Mech. Engrg. I19 (1994) 17-33 27

with no

--,-t top of
APPL)

puters.

v parallel
PPL to

apports
_ttching,

rogram
of this

•.-lifferent

parallel
,locking

"- t0. The

rules or

,tributes

F_.abt e, P_raltel

Communicat i_

- APPL
I I" PVM

• Expr_ sse

joh Control/Load

_lancing

. OQS

. Load Le,_ker

Post Processing

• Data ExpLorer

•AVS

i / I ._,_In_rrn_11on 1 _ I Gri_ Generators

I { 1 It::.%::J

App[IcoIlon$

I.AoPAc]
• PARE

• RPLU$

• F'LOW 3 P

Fig. 9. Distribute multi-block solver tool kit.

block processes to computers through APPL. Then, after every n time steps, the load balancer collects

(i) the average computation cost and communication cost of every process in the period from last load

distribution to present time, (ii) the extraneous process information of every computer from Process-

Trackers, (iii) old data block distribution from APPL, and (iv) data block information and interface
data from GPAR. Based on the above information, the load balancer re-distributes the data blocks

among the computers.

4. Examples

The following examples demonstrate the applicability of the dynamic load balancing method for

solving parallel CFD problems in the distributed computing environment• The first example dem-

i

FLOW3P

[]
L Process
I
t Tracker J

J

Number of G PAR
Extraneous

Processes

/
Block and

Interface

Sizes

"-,.. /',
I

i Balancer '

:

Communication Time

Old Process Distnbution

I APPL _

\
Computation

CPU

Time

f

New Process Distribution

!
t

Fig. 10. Information flow for the dynamic load balancer.

28 Y.P. Chien et al. / Comput. Methods Appl. Mech. Engrg. 119 (1994) 17-33

onstrates the application of the dynamic load balancer in a controlled environment. In this case. we

have the total control of the load distribution on all the computers. The computers used in the

experiment were five nodes on an IBM SPI at IBM Research Center at Kingston, New York. The

parallel CFD application program FLOW3P was used in this example. We assumed little knowledge

about the details of FLOW3P. Only several time-measuring instructions were added to FEOW3P

around the block solver and the interface solver as shown in Fig. 2. The input CFD data was a C-grid

with 65 000 nodes (see Fig. 11). This grid was divided into 30 blocks bv a grid-dividing program

developed for management of parallel grids. The topology of the blocks is depicted in Fig. 12. Numbers
on the C-grid indicate block numbers. The sizes of data blocks are listed in Table 1. Thousands of time

steps are usually required to obtain the final solution. After each time step, interface data are sent
between adjacent blocks via Ethernet.

Based on the assumption that the computers are of the same speed, these thirty data blocks are

initially distributed six per computer to five nodes on SP1 for parallel processing. In this experiment.

the cost function used for load balancing did not include the communication cost. We forced the

dynamic load balancer to rebalance load on the computer for every n time steps, where n = 13. Fig. 13

depicts timing for the application code execution in 5n time steps. The solid line represents the average

elapsed time used for execution per time step. The dashed line represents the estimated time of

execution per time step under balanced load distribution. The suggested load distribution at the end of

every set of n time steps are listed in Table 2. The integers under each computer number in every n

time steps are data block numbers. The extraneous load on each computer measured during each n time

step (in terms of number of processes are shown by the floating point numbers) is listed below the

suggested load distribution. During the first n time steps, only the processes of the application are

loaded on these five computers and no extraneous processes are introduced. Since there was no

extraneous load introduced during the n time steps, no load re-distribution was necessary at the end of

n time steps. During the second set of n time steps, three independent extraneous processes which

contains infinite loops were introduced to computer 1. Since computer 1 was slowed down, the

computation time of the application per time step jumped up during the second set of n time steps.

During this second set of n time steps, the dynamic load balancer detected the change in the

computation cost function. In the beginning of the third set of n time steps, the dynamic load balancer

Fig. I 1. FLOW3P C-grid with 65 000 nodes.

Y.P. Chien et al. / Comput. Methods Appl. Mech. Engrg. 119 (1994) 17-33 29

;e, we

---in the

,_. The

vledge
--DW3P

C-grid

ogram
..._mbers

_f time

e sent

ks are

iment,

ed the

Fig. 13

verage
ime of

-- end of

:very n
n time

-- ow the

ion are

was no

end of

; which

vn, the

--: steps.
in the

,alancer

27

26

25

3O

29

28

Fig. 12. Topological relationship for C-grid shown in Fig. 10.

Table 1

Number of nodes in each data block

Block number Block size Block number Block size Block number Block size

1 2304 11 2304 21 2176

2 2304 12 2176 22 2240

3 2176 13 2240 23 2304

4 2304 14 2304 24 2176

5 2304 15 2176 25 2240

6 2176 16 2176 26 2304

,4 2232 277 __40 17 2176

8 2304 18 2108 28 2240

9 2176 19 2240 29 2304

10 2240 20 2304 30 2176

_0

_S 15-

_ lo-"

< 5-

o

5 More on

3 Other Computer 3

Proceaaes f] l,aad
Appear on [

' Balanced

Computer I Load i : 24%i

i , Balanced i Faster
22%

Even D,st. r] Faster :
No Other

proce_se,; t__ ,,.......

---Experimental Time

..... Simulation Time

r ! r : , ; : r i r ; r , i ' _ ' _ I i

1 2 3 4 5 6

Number of n Iterations

Fig. 13. Timing result using FLOW3P on SP1 in a controlled environment v,ith varying load on 5 computers.

30 Y.P. Chien er al. Comput. Mechods Appl. Mech. Engrg. 119 (19941 17-33

Table 2

The load distribution of 5 nodes of SPI for every n time steps

Iteration Computer Computer Computer Computer Computer Experimental Simulation
1 2 3 4 5 time time

In 1,2, 3, 4. 7. g. 9, I3.14.15. 19, 20.21. 25.26, 27, 12.2 10.5

5.6 10. l l. 12 16, 17, 18 22.23, 24 28, 29, 30

0.0 0.0 0.0 0.0 0.0

2n " - "_ 9. 17.7 12.0..,4,_ l.,,8.[0, 6,13,14,15, 3.19,20,21, 25,26.27.

11. 12 16, 17.18 ,.__._3"_ . 24 28.29.30

3.0 0.0 0.0 0.0 0.0

3n 2..,t. 5 1.7.8. 10, 6, 13, 14.15, 3. 19.21). 21. 9. 'S 26. _7. 13.8 12.0

l 1. 12 16, 17, 18 _,-.""-3,"_24 28.29.30

3.0 0.0 0.0 0.0 0.0

• " 27.4n ..,'_4, 5, 18 I. 7.8.10. 6, 16, 17 3, I5.19.20, 9..5. _6. 21.8 14.6

11. 12.13. 21, 22, 23. 28.29.30

14 24

3.0 0.0 5.0 0.0 0.0

5n " 9. .7. 16.3 14,0,., 4, 5. I8 1,7, 8, 11). 6, 16. 17 3, 15, 19, 20. 25.26. "_

it12,13 _'1 "v_,,23, 28,29.30

14 24

3.0 0.0 5,0 0.0 0.0

removed three blocks from computer 1 and distributed these three blocks to the other computers. Since

there were no new processes introduced in the third n time steps, we can see that the load

re-distribution reduced the computation time by 22% compared to the second set of n time steps.

During the fourth set of n time steps, we introduced another five extraneous load processes to computer
3 so that the processing time for the application jumped up again. After load re-distribution at the end

of 4n time steps, the computation time was reduced 24% in the fifth set of n time steps.
The second example demonstrates the same experiment, except (i) six IBM RS/6000 Model 560

computers at NASA's Lewis Research Center in Cleveland, Ohio were used. and (ii) the computational

environmental was an uncontrolled multi-user environment. This cluster of RS/6000 computers was

also connected by an Ethernet and a common file server. In this experiment, the communication costs,

although it is small, were included in the cost function used for load balancing. The load distribution

was rebalanced among the computers in every n (n = 13) time steps. Fig. 14 depicts timing for the

application core's execution under such conditions during 5n time steps. Table 3 describes the
suggested re-distribution of 30 data blocks to the computers at the end of each n time steps, During the

first n time steps, the application program's processes were evenly distributed on these six computers

since we did not have information to do load balancing. Since there were changes of extraneous loads

during every n time steps, the computation load was re-distributed at the end of every set of n time

steps as depicted by the dashed line. Similar to the first example, three extraneous processes after n and

five extraneous processes after 3n time steps were introduced to compare the effects of the uncontrolled
environment.

5. Discussions

We have described the encouraging progress on dynamic load balancing for parallel CFD problems.

Many new questions surfaced which warrants further investigations,

(I) The dynamic load balancer described in this paper is designed for reducing the computer

processing time for CFD problems on workstation clusters where the only other computatior.

processes are single processes. It would be interesting to test if two or more parallel application>

Y.P. Chien et al. / Comput. Methods Appl. Mech. Engrg. 119 (199,1) 17-33 31

mlation

e

0

s. Since
le load

--e steps.

_mputer
the end

,del 560

Ltationai

o,.5_

e-

:".- 15 -

<_

5-

....... a
i

0

--Experimental Time

..... Simulation Time

0 1 2 3 4 5 6

Number of n Iterations

Fig. 14. Timing result using FLOW3P on LACE (RS,6000 workstations) in a multi-user environment with varying load on 6

computers.

are concurrently executed using the developed load balancer on the same computer network. A

racing for computing power may occur between two load balancers, which may diminish the
effect of load balancing. Some rules and regulations may be needed to coordinate load balancing

for multiple parallel programs.
(2) The above dynamic load balancer assumes that the parallel computer network does not have a

system load balancing ability. Ideally, the developed scheme should complement "a parallel

operating system'. By making use of the intimate knowledge of the blocked data utilized by the

specific CFD application, the developed scheme can provide guidance to such a global load

balancing scheme. On the other hand, rules and regulations have to be placed to avoid conflict.

(3) The efficiency of parallelization decreases when the ratio of number of blocks to the number of

computers approaches to one in a multi-user environment. This is due to the fact that, in this

Table 3

The load distribution on 6 nodes of LACE for eve_- n time steps

Iteration Com_?urer (-'omfuter C_mputer Computer Computer Computer Experimental Simulation
1 _ 3 4 5 6 time time

In 1.2,3,4, 6.7.8.0, 11,12,1.3. 16.1.7.18, 21.22,23. 26, 27, 28, 14.1 12.5

I0 14, 15 19.20 24.25 29, 30

-- :ers was
)n costs

tribution

_ for the
ibes the

aring the
0.4 0.4 0.3 0.1 0.2 0.1

_)mputers
ms loads

,f n time

2n 1.2.4,5, 6,7,8,9, 11,13 14,16.17, 3, 21,22, 12,26,27, 18.9 13.7

_ _ 3015 10 18.19.20 ,3. _4, _5 28.29,

0.0 0.5 3.6 0.1 0.2 0.0

__er n and

ontrolled
3n 1.2.4.5. 6,7,8,9, 11.13 14,16,17, 3,21,22, 12, 26.28, 17.5 14.6

15, 27 10.24 18, 19.20 23.25 2% 30

(1.2 O. 1 3.6 O. 1 1).7 0.3

_roblems.

4n 1.2.4, 7,8,9,1(], 5.11,13 14,16.17 3, 21,22, 6,12 24.4 16.3

28 24, 2615, _7, 18, 19.20, 23, 25, 29

3O

0.2 0.1. 3.5 0.1 0.1 5.7

computer

--nputation

plications

5n 1,2,4, 7.8,9, 10, 5, 11, 13 14, 16.17, 3, 18.21, 6,12 21.5 17.2

15 27, 28 " 26 _'_ _3 _¢,,4, 1% 20.30, z.

29

I).3 0.4 3.7 0.7 0.1 5.5

32 Y.P. Chien et al. _ Comput. A4ethods Appl. Mech. Engrg. 119 (I994) I7-33

(4)

(5)

case, the share of parallel processes in one computer changes significantly due to the addition or

deletion of extraneous processes. Adding another process on a computer will slow down the

parallel process on that computer and hence slow down the parallel computations on all

computers. However, the load balancer does not have much choice to re-distribute the parallel

application load.

We cannot allocate too manv block processes on one computer. The number of processes on each

computer is limited by the operating system. To avoid this problem, we combine several data

blocks into a single one.

At this time the re-distribution of the load is done intermittently. It is assumed that the processes

come to a stop before restarting the algorithm. One can improve the efficiency of such a scheme.

6. Conclusions

A methodology for dynamic load balancing of parallel CFD applications was developed. This method

enables the use of networked, multi-user workstations for solving large CFD problems. It is not

designed for any particular code but as a general tool to automate load balancing any given computer

network. The developed procedure provides a near optimal solution in terms of computation time.

Experiments demonstrate the practicality of the proposed dynamic load balancing method. In this

study, it is demonstrated that (i) dynamic computer load balancing can significantly increase the speed

of distributed computations in a multi-user environment, (ii) computational speed of computers is the

main factor to determine the solution time, (iii) the communication cost for parallel applications in a

tightly distributed computation environment can be reduced to a relatively small portion of total

solution cost by properly managing the data, (iv) the effective computation speed of a computer in a

multi-user mode to a parallel user can be measured if the number of processes on that computer and (v)

the measurement of communication speed on Ethernet network becomes unreliable as the network

becomes crowded. The developed procedure can be extended to accomodate adaptive algorithms in

terms of grids or solution schemes as well as complex computer networks.

Acknowledgment

This research has been sponsored by NASA Lewis Research Center, Computational Technologies

Branch under Grant No. NAG3-1246. Computer support by IBM Research Center, Kingston, New

York is also gratefully acknowledged.

References

[1] T.A. Egolf. Connection Machine utilization and experience at the United Technologies Research Center, Presented at the
Fourth SIAM Conference on Parallel Processing for Scientific Computing, Chicago, 10-13 December. 1989.

[2] T.F. Chan, Y. Saad and M. Schultz, Solving elliptic partial differential equations on hypercubes, in: M. Heath, ed., Proc.
First Conf. on Hypercube Multiprocessors, Knoxville. TN (SIAM. Philadelphia, August, 1985) 196-210.

[3] T. Tezduvar. S. Aliabadi, M. Behr, A. Johnson and S. Mittal. Parallel finite-element computation of 3D flows, IEEE
Computer (October. 1993) 27-36,

[41 T.P. Green, R. Pennington and D. Reynolds. Distributed Queuing System Version 2.1 Release Notes, Supercomputer
Computations Research Institute, Florida State University, 1993.

[5] H.U. Akay. A. Ecer and W.B. Kemle, A parallel explicit solver for unsteady compressible flows, in: K.G. Reinsch et al..
eds., Parallel Computational Fluid Dynamics '91 I EIsevier Science Publishers. The Netherlands) 1-16.

[6] D. Williams, Performance of Dynamic Load Balancing Algorithms for Unstructured Grid Calculations, CalTech Report.
C3P913, 1990.

[71 H. Simon. Partitioning of unstructured problems for parallel processing. NASA Ames Tech Report, RNR-91-008, 1991.
[8] R, Lohner. R. Ramamurti and D. Martin, A Parallelizable Load Balancing Algorithm. Proc. 31st Aerospace Science-

Meeting & Exhibit, Reno. Nevada. 11.-14 January, 1993.

w

Y.P. Chien et al. / Cornput. Methods Appl. Mech. Engrg. I19 (1994) I7-33 33

ion or

"-wn the

on all

,arallel

m each

al data

ocesses

:heine.

method

is not

--,mputer
n time.

In this

--e speed
-s is the

ms in a

--of total

.ter in a

and (v)
-- network

thms in

noiogies
on, New

nted at the

ed., Proc.

ows, IEEE

ercomputer

nsch et al.,

ch Report,

w _d8. 1991.

ce Sciences

[91 H.U. Akay, R. Blech, A. Ecer, D. Ercoskun, B. Kemle, A. Quealy and A. Williams. A database management system for

parallel processing of CFD algorithms, in: R.B. Pelz et al., eds., Parallel Computational Fluid Dynamics "92 (Elsevier
Science Publishers. The Netherlands, 1993).

[I01 Y.P. Chien, F. Carpenter. A. Ecer and H.U. Akay, Computer load balancing for parallel computation of fluid dynamics

problems. Parallel Computational Fluid Dynamics 93, Paris, France, May, 1993.

[11] T.H. Cormen, C.E. Leiserson and R.L. Rivest, Introduction to Algorithms (The MIT Press, Cambridge, Massachusetts,

1989).

[121 A. Quealy. G.L. Cole and R.A. Blech. Portable programming on parallel/networked computers using application portable

library (APPL), NASA Technical Memorandum, 106238, July, 1993.

[13[A. Ecer, H.U. Akay, W.B. Kemle, H. Wang, D. Ercoskun and E.J. Hall. Parallel computation of fluid dynamics problems,

Comput. Methods Appl. Mech. Engrg. 112 (1994) 91-108.

Parallel CFD '96, Capri, Italy, 1996.

Communication Cost Function for Parallel CFD

Using Variable Time Stepping Algorithms

Y.P. Chien, S. Secer, A. Ecer and H.U. Akay

Computational Fluid Dynamics Laboratory

Purdue School of Engineering and Technology, IUPUI

Indianapolis, Indiana 46202, USA

ABSTRACT

Network of workstations are widely used for parallel computational fluid dynamics (CFD). A

unique problem in parallel CFD is load balancing. We have been studying dynamic load

balancing for parallel CFD on a heterogeneous and multi-user environment for several years.

Our approach is to cut the problem domain into n blocks and distribute the blocks among m

processors, where m < n. Computer load is balanced by distributing blocks among computers

such that the maximum elapsed execution time of all blocks is minimized. Our load balancing

uses optimization algorithms based on the computation and communication cost functions. The

cost functions developed previously were under the assumption that all blocks are computed

using the same time-steps [1]. Recent CFD algorithm development demonstrates that variable

time-stepping approach can significantly reduce the computation and communication

requirements. Variable time-stepping algorithms allow different time-step sizes to be selected

independently in different subdomains (btocks) [2]. Therefore, uniform time step assumption

used in our previous cost function is not valid for variable time stepping algorithms. In this

paper, we describe a new communication cost function for parallel CFD using variable time

stepping algorithms. The experiments demonstrate that the proposed communication cost

function is reasonably accurate.

1. INTRODUCTION

Recent parallel CFD algorithm development demonstrates that variable time-stepping

approach can significantly reduce the computation and communication time requirement [2, 3].

The variable time-stepping algorithm means that different sizes of time-steps can be selected

independently in different subdomains (blocks) for each time-step. In a parallel solution

environment (where a block-based parallelization is applied) the time-steps of blocks may be

different from each other and change dynamically. In order to compare the communication time

in different block interfaces, a reference time step, basic time-step, is defined as the minimum

time-step that can be chosen by all blocks. We assumed that the time-steps chosen by all blocks

are integer multiples of the basic time-step.

Threedifferentsituationsareconsideredin block-basedvariabletime-steppingalgorithms:
All blocks choose the same fixed time-step (fix time-stepping algorithm): all blocks solves,

sends and receives messages every basic time-step.

Blocks choose their own time-steps independent of each other: Blocks will solve and

exchange information when they reach to their own time-steps chosen independently. In this

case, blocks and interfaces choose the same time-step.

l"nterfaces choose their own time-steps independent of the blocks: In this case, interfaces will

send information to the neighboring interfaces when they reach to their interface time-steps.

While the flexibility of choosing different time-steps throughout blocks and interfaces

eliminates many unnecessary computation and communication, it complicated the tasks of load

balancing. However, the complication does not affect the load balancing algorithm but rather

require a new cost functions derivation. Since the number of time steps executed in blocks and

interfaces are different, the communication per time step does not reflect the true load on the

computers. In this paper we will discuss how to find the communication cost for variable time

stepping algorithms.

We have derived equations in [1] to provide the communication cost of sending one CFD

interface message between two CFD processes whether they are on the same machine or different

machines. To find the communication cost for a parallel CFD on different computers, we

represent this communication cost by elap_comm[i][j], where j is the block that sends the

message and i is the block that receives the message. We will use elap_comm[i][j] as the starting

point to estimate the communication cost in CFD programs in this paper.

2. COMMUNICATION COST FUNCTION FOR VARIABLE TIME STEPPING

INTERFACE

The notations used for deriving the communication cost function of variable time stepping

interface ttu-oughout this paper are listed as follows:

• N number of total basic time-steps in the program execution.

• elapcomp[i][m]: average elapsed computation time of block i on computer m per time-

step.

• num_ts[i] : number of time-steps executed by block i during the entire execution.

• btspts_comp[i]: the average number of basic time-steps per time-step for block i.

• elap_comm[i][j]: average communication time from the interface of block j to the

interface of block i per time-step.

• tot_elap_comm[i][/]: total elapsed communication time from the interface of blockj to
the interface of block i for the entire execution.

• tot_waiting_time[i][j]: total waiting time from the interface of blockj to the interface of
block i or the entire execution.

• tot_comm_wait[i][l]: total elapsed communication and waiting time from the interface of

blockj to the interface of block i for the entire execution.

• comm_wait_bts[i][j]: average elapsed communication and waiting time between the

interfaces of blocks i andj per basic time-step.

• btspts_comm[i]: the average number of basic time-steps per time-step for the interface of

block i.

The communication cost function for a variable time-stepping CFD algoritb_m is derived as

follows. It is assumed that there are p computers or processes and there are k CFD blocks on

computer m. Block i has n neighbors which are numbered from 1 to n. In order to estimate the

communication cost for a variable time-stepping CFD algorithm, we need to know num ts[i],

where num tsfi] is:

num_ ts[iJ = N/btspts_ comp[t] (I)

Step 1" Find the elap_comm[i][j] for each neighbor block pairs.

Elap_comm[i][j] is the communication cost for one interface connection between the

interfaces of blocks i and j per time-step. This has been presented in Parallel CFD'96

conference.

Step 2: Find the total communication time for every neighbor block pairs during the CFD
execution.

tot_ clap_ comm[i][j] =elap_ comm[i][j] * (N / btspts_ comm[i]) (2)

Step 3: Find the total elapsed communication and waiting time for every neighbor block pairs.

This is the most important step in estimating the total communication time. This value will be

calculated for each block with its neighbors. The total elapsed communication time and waiting

time between two blocks is composed of two terms (equation 3).

tot_ comm_ wait[i][j] = tot_ elap_ comm[i][j] + tot_ waiting_ time[i][j] (3)

The second term in equation 3 is the waiting_time, which is introduced by the variable time-

stepping algorithm. For two neighbor blocks i and j, if num_ts[i] is bigger than num_ts[j]

then block i will experience more computation. During the entire CFD execution, block i will

compute (num_ts[i]-num_tsO']) more basic time-steps then blockj (block i and blockj are called

slow and fast blocks, respectively). Therefore, blockj will reach to its interface time-step earlier

then block i and will wait for block i to reach to a basic time-step equal to or bigger than blockj

current basic time-step. The equation for total_waitingtime for fast blockj (due to block i) on

computer m is:

tot_ waiting_ time[Jill] =elap_ comp[i][m] *(num_ ts[i]- num_ ts[j]) (4)

However, slow block i will not experience any waiting time, since when block i reaches its

interface time-step block j interface would have already sent its message to block i interface.

Therefore, for slow block i the total elapsed communication and waiting time is:

tot_ comm_ wait[i][j] = tot_ e[ap_ comm[i][j] (5)

and for fast block j the total elapsed communication and waiting time is:

tot_ comm_ wait[j][i] = tot_ clap_ comm[j][i] + tot_ waiting_ time[j][i] (6)

Step 4: Find the average elapsed communication time for interfaces from blocks i andj per basic

time-step.

comm_ wait_ bts[i J[j] = tot_ clap_ comm[i][j] / N (7)

Simplification of the cost function for fixed time-step CFD algorithms

If the CFD code uses the fixed time-stepping algorithm then since for all blocks

num_ts[i]= num_ts[j] = N and btspts_cornm[i]=l for all interfaces. Therefore, equations 5

and 6 would be simplified as:

tot_ comm_ wait[i][j] = clap_ comm[i][j]* N (8)

Substituting equation 8 into 7, equation 7 can be simplified as:

comm_ wait_ bts[i][j] = clap_ comm[i][j] (9)

3. ACCURACY OF THE COMMUNICATION COST FUNCTION

A variable time-stepping CFD code, PARC3D, was run on five processors of an IBM SP

computer in the test case. APPL message passing library [4] is used for parallel programming

execution. In PARC3D code, the computation is handled by block solver and communication is

managed by the interface solver. The block solver and interface solver in each process choose

their own time-steps during the program execution. The CFD data is divided into 16 similar

sized blocks.

Four load balancing cycles are executed in this test. In each of the load balancing cycle, the

elapsed execution time was measured. Initially the number of processes are evenly distributed

among computers. A cost function is derived based on the time measurement. The elapsed

execution time estimated using this cost function is compared with the measured time (see Figure

1). This derived cost function is used by the load balancing algorithm [5] to provide a balanced

load distribution. The elapsed execution time predicted by the cost function for the new load

distribution was compared with the actual measured execution time for the new load distribution

(see Figure 2). This test case shows that the derived cost function closely describe the time used

for parallel CFD execution. Based on the cost function, the load balancing algorithm does

suggest a better load distribution.

4. CONCLUSION

Communication cost function for variable interface time stepping CFD algorithm is

developed. The new communication cost function has been tested on IBM SP computer. The

test case showed that the cost function can predict the execution time of variable time step

parallel CFD code.

A

"O

C

O

ta)

g)

E

"O

gl

e_

N

U.I

0.8

0.75

0.7

0.65

0.6

0.55

0.5

0.45

|

_2 _5

Cycle Number

Figure 1. The comparison of measured execution time and the time obtained from the cost

function. The solid line is the measured elapsed time. The dashed line is the elapsed time of

generated by the cost function.

e.-

o

¢/)
v

E

I.-
"O

e'_

m

ILl

0.8

0.75

0.7

0.65

0.6

0.55

0.5

0.45
1

L _

1.5 2 2.5 3 3.5 4 4.5 5

Cycle Number

Figure 2. The comparison of predicted execution time to the measured execution time. The solid

line is the measured elapsed time. The dashed line is the elapsed time of predicted by the cost

function.

REFERENCES

° Y.P. Chien, A. Ecer, H.U. Akay and S. Secer, "Communication Cost Function for

Parallel CFD in a Heterogeneous Environment Using Ethemet," Parallel Computational

Fluid Dynamics: Algorithms and Results Using Advanced Computers, Edited by P.

Schiano et al., 1997, Elsevier Science, pp. 1-10.

. H.U. Akay, A. Ecer and A.B. Acikmese, "Variable Time-Stepping Strategies for Explicit

and Parallel Solution of Unsteady Viscous and Inviscid Compressible Flows," Parallel

Computational Fluid Dynamics: Algorithms and Results Using Advanced Computers,

Edited by P. Schiano et al., 1997, Elsevier Science, pp. 328-335.

. R.D. Williams, J. Hauser and R, Winkelmann, "Efficient Convergence Acceleration for a

Parallel CFD Code," Parallel Computational Fluid Dynamics." Algorithms and Results

Using Advanced Computers, Edited by P. Schiano, et al., 1997, Elsevier Science, pp. 437-

444.

, A. Quealy, G.L. Cole and R.A. Blech, "Portable Programming on ParallelfNetworked

Computers Using the Application Parallel Library APPL", NASA Technical

Memorandum 106238, Lewis Research Center, Cleveland, Ohio, USA, 1993.

. Y.P. Chien, A. Ecer, F. Carpenter and H.U. Akay, "Computer Load Balancing for Parallel

Computation of Fluid Dynamics Problems", Computer Methods in Applied Mechanics

and Engineering, Vol. 120, 1995, pp. 119-130.

I I • _

Parallel Computational Fluid Dynamics:

Algorithms and Results Using Advanced Computers
P. Schiano, A. Ecer, J. Periaux and N. Satofuka (Editors)

© 1997 Elsevier Science B.V, All rights reserved.

Communication Cost Function for Parallel CFD in a Heterogeneous

Environment Using Ethernet

Y, P. Chien, A. Ecer, H. U. Akay and S. Secer

Computational Fluid Dynamics Laboratory
Purdue School of Engineering and Technology, IUPUI

Indianapolis, IN 46202, USA

In order to increase the efficiency of parallel CFD algorithms, a special domain

decomposition approach is adopted which divides the problem domain into a number of blocks
that are more than the number of computers. Each block is associated with a set of interfaces.
Each block and interface is assigned with a block solver and an interface solver, respectively.
A software library was previously developed to support this approach [1]. To improve the
efficiency of parallel CFD using this approach, a load balancing algorithm [2, 3] was also
developed. The load balancing algorithm requires the availability of a computation cost
function and a communication cost function to describe the speed of the computers and
networks for parallel CFD. In this paper, derivation of a new communication cost function for
parallel computing in a heterogeneous network environment using Ethernet with TCP/IP
protocol is presented. A practical real time procedure for obtaining the communication cost
function during the execution of parallel CFD is described. This procedure supports dynamic
computer load balancing of parallel codes. The experimental results show that the predicted
elapsed times derived from our computation and communication cost functions are very close
to the measured elapsed times.

1. INTRODUCTION

Solving computational fluid dynamics problems requires computers of very fast
computation speed and large memory space. As the computation speed and memory size of
computers increase, larger CFD problems need to be solved as well. Parallel and distribute, d
computing are considered as practical ways of satisfying the computation requirement of
parallel CFD algorithms. It is well kalown in the parallel computing community that the speed
gain of parallel computations diminishes as the scale of parallelization increases. It is also well
known that the causes of the diminished return of further parallelization are due to the load
imbalance among paralIel processors and the communication overhead between parallel and
distributed processes.

Computer load balancing for parallel CFD is especially important when many
processors are involved. Most domain decomposition based parallel approaches divide the
problem domain into a number of subdomains that are the same as the number of computers
used in parallel execution. Load balancing is achieved by changing the number of grid points
in the subdomains. One assumption used in these approaches is that the relative computation
speeds of the parallel and distributed computers and the effective communication speeds of the
network are known. However, this assumption is valid when the parallel systems are
homogeneous and are used in a single user mode. Since using homogeneous parallel
computers in a single user mode is expensive, it is desirable to use many readily available
heterogeneous networked workstations and supercomputers for parallel CFD. Besides, many
supercomputers developed recently (e.g., IBM SP, Cray T3D, Silicon Graphics Galaxy, etc.)

2

can be considered as a set of connected high-end multi-user workstations with a special
intcrconnecdon network. If a load balancing algorithm can be develope_i for networked

heterogeneous workstations, it can be used in homogeneous environments too.
We have been studying dynamic load balancing for parallel CFD on a heterogeneous

and multi-user environment for three years. Our approach is to cut the problem domain into n
blocks and distribute the blocks among m processors, where m < n. Computer load is

balanced by a proper distribution of blocks among the computers [2, 3]. In our study, we
faced three issues. The first is to find a fast optimization algorithm for dynamic load balancing.
The second isto dctcrrninethe effectivecomputation speed of allcomputers in a multi-user

environment. The thirdisto findthe effectivecommunication speed of computer networks

used forthe parallelCFD. The solutionsof thefirsttwo issuesfor a network of singleCPU
computers have been previouslytreatedwithsuccess[l,2] and a software package DLB was

developed to generate thesesolutions.Being tcstcdwith severalparallelCFD programs for

many CPU bound cases,DLB demonstrated significantefficiencyimprovements especiallyin
thecasesthathuman intuitionforloadbalancingwas limited.However, we have not been able
to use DLB for communication bound parallclCFD problems due to the lack of a good

communication cost function untilrecently.In thispaper, we illustratepracticalmeans of

determining a reliable communication cost function for a Ethemet network.
The paper is organized as follows. Section 1 is the general introduction of the effect of

communication to the parallel CFD. Section 2 discusses how to determine the communication
cost function for a Ethernet network and describes how to incorporate this cost function into

the dynamic load balancing. Section 3 presents some experimental results. The last section
concludes thepaper.

2. DETERMINING A COMMUNICATION COST FUNCTION

By analyzing the time used for all processes in a parallel CFD, we found that the total
elapsed time can be divided into three categories: the computation time, the communication
time, and the waiting time. Load balancing can be used to minimize the communication time
between computers and to minimize the waiting time of all processors. In other words, load
balancing is to keep all computers busy and to reduce the cost of data exchange between
computers. In order to balance the computer load, a cost function is needed. Our approach for
predicting the future computation and communication cost functions is to derive them based on
the immediate past computation and communication costs. We have developed algorithms to
measure the total elapsed time and the computation time and derived the computation cost
function [1]. Here, we describe how to find the communication time and derive a
communication cost function. Since Ethernet network is a most widely used computer
network, we concentrated our study on finding the communication cost function for Ethcrnet
networks.

The measurement for the communication time on an Ethemet network during parallel

CFD is a difficult problem due to the random nature of message passing and collision handling
protocol. Since parallel CFD codes generate large amount of data for communication w_ch
affect the network load, the communication speed information during the execution is needed

for load balancing. Although some specialized programs exist for monitoring the network
load, it is difficult to use them only during the execution of parallel calculations. Therefore, an

approach is developed to measure the communication time during parallel computations and to
derive the communication cost function based on this measurement.

2.1 Measuring the Communication Time Between Processors
The criteria needed for measuring the communication speed of the computer network

used for parallel calculations are rather unique. The measurement should reflect the
communication _ during the parallel CFD execution and should have minimal perturbation
to the load of the computers and network used for parallel CFD. In order to satisfy these
requirements, we developed a communication tracking parallel program, CTRACK. Since the

parallel CFD creates a lot of communication which affects the network load, CTRACK
periodically records the communication speed by sending a message between every pair of
computers used during the CFD execution. To prevent adding additional load to the computers
and network, CTRACK sends at most one message through the network at any given moment.
The idea for the measurement of communication time between two computers is straight
forward. The source computer sends a time stamped message to the target computer.
Immediately after the target computer receives the message, it attaches a new time stamp to the
message. Then the communication time for sending the message is the difference between the
two successive time stamps. However, many issues need to be considered in order to
understand and utilize this measurement information. By investigating many measurements of
communication speed of computer networks, the following observations were found to be
significant for analyzing the measured communication time.

Observation 1: Different computers have different clocks. Since the two time stamps for
measuring the communication time axe taken on different computers, the clock difference
between two computers must be known. A surprising fact is that the clock difference between
computers can be significant. Even the clock difference of different processors on the same
IBM/SP system can be in the order of milliseconds. Table 1 shows an example of the clock
differences among three RS6000s and four processors of an IBM/SP. Since the clock

differences can contribute to large measurement errors, the communication time Cba for

sending a message from computer a to computer b is modified as follows:

Cba =t'z -tl +Atba (1)

where t1 is the time stamp on the message issued by computer at,

t2 is the time stamp on the message issued by computer b, and

Atba is the clock difference between computer a and computer b.

Table 1. Clock differences between three RS6000 CRS6K) and four nodes of an IBM/SP on
the same local network in seconds.

RS6K 1

RS6K 2

RS6K 3

node 4

node 5
node 6
node 7

RS6K I RS6K 2 RS6K 3 node 4 node 5 node 6 node 7

" 0 -0.0037 -0.0021 -2.0344 -2.0349 -2.0349 -2.0348

0 0.0016 -2.0332 22.0331 -2.0334 -2.0334

0 -2.0348 -2.0346 -2.0348 -2.0346
0 -0,0001 -0.0003 -0.0001

0 0.0001 -0.0006
II

0 -0.0005
0

Since the clock differences between computers are constant, they need to be measured
only once. The condition for using this procedure is that there are no loads on the computers
and the network. The following is the procedure adopted for determining the clock difference
besween two computers:

Step I.

Step 2.

The computer a sends computer b a short message attached with a dine stamp

tl.
Immediately after receiving the message, the computer b attaches a new time

stamp t2 to the message and sends the message back to the computer a.

Step 3.

Step 4.

Immediately after receiving the returned message from the computer b, the

computer a time stamps the message with ts.

The clock difference, Att_, between computer b and computer a is calculated

from:

, tta -t2)+o.5(,3-,1) (2)

Observation 2: Communication time is stepwise linear with the size of the message.

According to the IEEE standard 802.3, the message on Ethernet is sent in packets. The
maximum number of data in each packet is 1,500 bytes [4]. By measuring.the communication
time for messages of various sizes, we also observed that the communicanon time is stepwise
linear to the size of the message. This fact can be used for deriving of the communication cost,
C, of a large message based on the communication cost of other message:

C = KsA (3)

where A = eta = t2 - tl + Atta for a message of one packet size and K, is the number of

packets.

Observation 3: The communication cost for sending messages between two processes on

the same processor cannot be neglected. Contrary to our earlier assumption that the
communication between processes on the same computer takes negligible time, we observed
that this communication cost can be as high as about one third of the communication time for

sending the same message between two different computers.

2.2 The Effect of the Load on the Computer to the Communication Time

After incorporating the three aforementioned facts into the communication cost function
and using it in the load balancing algorithm described in [2], the predicted communication time
was still found to be fax from the actual measured communication time. Therefore, other

factors that affect the communication time were investigated.

Observation 4: The communication time for sending a message between processes on the
same computer is a function of the number of the load on the computer. Based on the
measurements of communication time for sending the same message between two processes on

the same computer under various computational loads, the communication cost function can be
approximated by the following linear function (Figure 1):

C= Ka(A + rpL) (4)

where, C is the communication time for sending a message between two processes on a

computer, K s is the number of packets used for sending the message, A is the communication

time when there is no load on the computer in terms of seconds, Kt, is the load factor in terms

of seconds per process 0oad) on the computer, and L is the number of processes (load) on the

computer.
It should be noted that the CPU bound loads on a computer give different linear

functions than the I/O bound loads.

I I III Illll _.

0.011 , I I 1 ', w I ,

0.009 ._

0.007

....;.Y""

o.oo
• "'" "" 5 CPU bound load

0.003 ."Z-'" 10 CPU bound load
20 CPU bound load

• •

I I I I I _ I | I

0.001 0 4000 8000 120(}0 16(X)0

NUMBER OF BYTES SENT

Ftgure 1. Load factor versus the message size with different CPU
bound loads on the computer.

Observation 5: The communication time between processes on different computers is
affected by both the loads of the source computer and destinatLon computer. To study the
effect of computer loads to the communication time, computers of different speeds were
assignedasthesenderand thereceiverof themessageinthemeasurementofcommunication
time.Table2 shows thecommunicationtimeofsending32-bytemessagesundervariousloads
on both thesendercomputer and thereceivercomputcr.Both thesenderand therex.civer
computersaxeIBM RS60(0)sbuttheCPU speedofthesenderistwicefasterthanthatofthe
receiver.The mcasuremcntresultisan averageof 700 trials.The unitof thenumbers inthe
tableismilliseconds.In thisparticularcase,theloadof thereceivercomputer affectsthe
communicationtirncthemost.However, inothcrcases,suchasmore loadon a slowersender
and Icssloadon a fasterreceiver,theloadofthesendercomputercontrolsthecommunication
time."Tniscanbe explainedby thedesignof theUNIX system[5].Ina multi-userand multi-
taskingcomputer,theCPU issharedby allprocesseson thecomputer.The operatingsystem
assignsa timequantum toeach taskintheprocessroundrobinqueue. Therefore,themore
loadand theslowerCPU on a computer willcauseslowerresponseto themessage by the
computer.

TableZ Effectoftbcloadson senderand receivercomputerstothecommunicationtime.

Number of CPU
bound loads on
the receiver

0
1
2

,,i

3
4
5
6

0
2.8
3.0
4.8

i

6.2
7.5
8.3
7.8

Number of CPU bound load on the sender

I
2.5
3.0
5.2
6.2
7.8
8.0
8.6

2 3
2.5 3.1
3.3 4.2
5.2 5.5
6.6 6.4
7.5 6.1
8.5 7.2
8.6 7.9

4
3.0
4.0
6.3
7.0
7.4
8.6
6.6

5
2.6
3.4
5.6
7.2
7.7
7.8
6.4

6
2.6
2.7
4.5
7.1
8.1
7.9
6.3

L

I
I

6

]l I '

2.3 Derived Communication Cost Function

Based on the above observations, communication cost functions for sending messages
on the same computer and to different computers are developed.

2.3.1 For sending messages between processes on the same computer
Communicar/on time between two processes on the same computer is:

(5)

where K s is the number of packets used by the message,

A is the communication time for sending one packet between computers,

K_, is the time quantum for CPU bound processes,

Le.pu is the average number of CPU bound processes,

K/o is the time quantum for I/O bound processes, and

L/o is the average number of//O bound processes.

This communication cost function can accurately predict the communication time
between computers in a testing environment in which the type of processes are known.

However, it is difficult to determine K/o and L/o during practical parallel computations since

whether a process is CPU bound or IX) bound is unknown. Depending on the input and load
distribution, a parallel program can be CPU bound in one case and I10 bound in another case.
To solve this problem, it is assumed that any process that is not our parallel CFD process as the
CPU bound process (we also call them extraneous processes). A program PTRACK has been
developed for finding the number of extnmeous processes during parallel CFD executions [21.
It is also assumed that parallel CFD for a given input is a fixed combination of CPU bound and
DO bound processes. Therefore, the communication cost function between two processes on
the same computer can be rewritten as:

K,(A + KcpuLet,, + Kc/dl-,cfd) (6)

where Kcf a is the time quantum for parallel CFD processes and LeN is the average number of

parallel CFD processes.

The coefficientsKs and Lo,a can be obtained or calculatedfrom the CFD data input,

and/__, can be measmed [2]. The coefficient A, K_H and Kcf a can be derived by measuring

the communication cost under different Lee - andlef a. Since Kq,,, and Kq, a are independent of

the computer network, they need to be derived only once. The coefficient A reflects the
network load so that it is measured repeatedly during parallel CFD. It should be noted that due
to the random nature of the computer and network loads, and due to the collisions in the
Ethernet, the reliable measurement value should be the mean of many measurement samples.

2.3.2 For sending messages between processes on different computers
The approach used for deriving the communication cost function for sending messages

between processes on different computers is similar to that on the same computer. However,
the communication cost functionisaffectedby the number and type of loads on both the

sending and receiving computers (as described in Observation 5). Therefore, the

communication cost function between two processes on differentcomputers can be

approximated from:

Ks(A + F) + Arab (7)

where, Ks isthe number of paclmtsneeded forthemessage,

A isthecommunication time forone packetinthenetwork,

At_ istheclockdifferencebetween computers a and b, and

F isa functionof theloadson thesendingand receivingcomputers.

The function F can be derived accurately only when the load matrix as shown in Table 2 is

available for computers a and b. However, generating the load matrix is a time consuming
process which is not suitable for real-time dynamic load balancing. Based on the observation

of the load matrices of many pairs of computers, F is approximated by:

(8)

where

La_. is the average number of extraneous CPU bound processes in the sending

computer a,

Kact, u is the time quantum for extraneous CPU bound processes in the sending

computer a,

Laefd

Kaq,d

]Cbcpu

Lbcfd

Kb_d

is the average number of CFD processes in the sending computer a,

is the time quantum for CFD processes in the sending computm" a,

is the average number of extraneous CPU bound processes in the receiving

computer b,

is the time quantum for extraneous CPU bound processes in the receiving

computer b,

is the average number of CFT) processes in the receiving computer b,

is the time quantum for CFD processes in the receiving computer b.

The procedure for f'mding this communication cost function is as follows:

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

F'md At_ using the procedure for determining the clock difference between two

computers described in section 2.1.

Let computer a to be the message sender and b to be the message receiver.
Measure the communication cost without parallel CFD load on both sender and
receiver computers.
Measure the communication cost after adding several CPU bound loads to the

receiver computer. Since K s and all L are known, Kb@,, can be derived based

on the results of steps 2 to 4.
Measure the communication cost after adding several CFD loads to the receiver

computer. Since K s and all L are known, Kb,# can be derived based on the

results of steps 1 to 4.

Change the role of sender and receiver and repeat steps2 to 4 to generate Kact, u

and Kac/d

3. EXPERIMENTAL RESULTS

3.1 Evaluation of the Communication Cost Function

The communication cost function is used to predict the elapsed processing time of a
parallel CFD with various data input and various number of computers. Table 3 summarizes
the results on an IBM/SP system. The column for "# of blocks" in the table defines the
number of solution blocks used in each case. The column for "ratio of comp/comm" describes
the ratio of measured elapsed computation time to the measured elapsed communication time.
The column for "% error" is calculated as:

%error = I measured elapsed time - predicted elapsed time 11meas_ c'ia-p--_ _e

Table 3. Performance of cost function with different data input.

Average Ratioof Measured Predicted

Case # of # of block grid comp/comm elapsed elapsed % Error

Blocks Hosts points time time time
1 5 3 11000 1.43 0.085 0.086 1.2

2 5 3 40000 2.45 0.262 0.249 5
3 10 3 22000 0.77 0.233 0.263 12

4 12 5 19000 0.186 0.299 0.360 20

5 15 5 15000 0.088 0.410 0.290 29

6 15 3 15000 1.00 0.234 0.235 0.5
7 20 5 12000 0.064 0.449 0.336 25

The majority of the cases in the experiment have unreasonably high communication
costs. These cases were chosen for demonstrating the accuracy of the communication cost

function in rather unfavorable conditions. The ratio of the measured elapsed computation time
to the measured elapsed communication time is determined by the sizes of blocks, the number
of computm's used and the topology ofthe blocks.As depictedinthe table,thecommunication

cost function gives fairly accurate prediction of elapsed execution time when the

communication costiscomparable to or littlemore than the computation time. When the

weight of communication isseveraltimes of thatof the computation time,the costfunction

becomes inaccurate.However, thissituationdoes not usuallyoccur inpracticalapplications
with very large size blocks.

3.2 Dynamic Load Balancing Using the Communication Cost Function
The following experiment demonstrates the applicability of the communication cost

function. Three IBM RS6000 computers were used in the experiments. The CPU speeds of
the first two RS6000s are similar. The CPU speed of RS6000 #3 is about one half of that of
the other RS6000s. In order to make communication a dominant factor in parallel
computations, a small case with 54,400 grid points was executed on three computers. The
CFD problem is divided into 5 blocks of similar sizes. In this arrangement, the communication
time used in the program execution is comparable to the computation time even when the load
is balanced. Initially, the load is distributed to the computers as follows:

I RS6000 #1 I RS6000 #2block 1 block 2 I Rs6000#3 Iblocks 3, 4, 5 I

I!

Using the communication cost function described in the previous sections and the computation
cost function described in [2], the load balancing algorithm [3] predicted that the elapsed
execution time would be 0.372 seconds per time step. The measured actual elapsed execution
time of this distribution was 0.367 seconds (Figure 2).

_00 Hl_Elap

H2_Elap H3_Elap

n(12)

n(23)

n(32)

n(43)

Blk 0 Blk I

Host I Host 2

[] Elapsed Computational time

[] Waiting + Communication time

Hi_Elap = Host "i" Elapsed time

Blk 2 Blk 3 Blk 4

Host 3

n(ij): Communication cost between blocks "i" and "j"

Predicted Elapsed time (milliseconds) = 372

Actual Elapsed time (milliseconds) = 367

Hgme 2. Computation, communication and the waiting time in one iteration before DLB.

Based on the information obtainedin this execution, the load balanceprogram suggested the
following distribution:

blocks 1, 2, 5 blocks 3, 4

This suggested distribution shows that para]lelization to more than two computers actually
increases the execution time. The suggestion also agrees with the fact that RS6000 #3 is a
slower computer. The load balancing program predicted that the elapsed execution time for this
distributionis0.175 seconds per time step. The measured actualelapsedexecution time for
thisload distributionis0.179 seconds per time step(Figure3). This experiment demonstrates

that the communication cost function is fairly accurate.
The development of a communication cost function relics on the accurate measurement

of the communication time. Due to the random nature of the Ethcmet and TCP/IP, one time

measurement is mostly unreliable. Therefore, all measurements are repeated several hundred
times (as time permits) concurrently with the parallel CFD execution. The resuh is the mean of
all these repeated measurements. Since the parallel CFD executions usually run for hours,
there is usually enough time to take the communication time measurement repeatedly without
adding noticeableloadtothecomputers and thenetwork.

10

!
m

o_

E

t--

m

150

l

100

m

50

Hl_Elap

n(21)

n(23) n(43)

H2_Elap

n(12) n(34)

n(32)

BIk2 Blk4

Host 1

!1 Elapsed Computational time

[] Waiting + Communication time

Hi_Elap = HosI "i" Elapsed time

Blk 0 Blk 1 Blk 3

Host 2

n(ij): Communication cost between blocks 'T' and "j"

Predicted Elapsed time (milliseconds) = 175

ActualElapsedtime(milliseconds)= 179

Figure 3. Computation, communication and the waiting time in one iteration after DLB.

4. CONCLUSIONS

The communication time for parallel CFD is a function of not only the computer
network but also the loads on the computers which send and receive the message. A
communication cost function is developed based on these observations. A software package is

also developed to automatically derive the communication cost function for Ethernet network
and TCP/IP protocol.

ACKNOWLEDGMENT

This research was funded by the NASA Lewis Research Center, Computational

Technologies Branch, under grant: NAG3-1577.

REFERENCES

.

.

.

°

5.

Akay, H.U., Blech, R., Ecer, A., Ercoskun, D., Kemle, B., Quealy, A. and Williams,
A. (1993), 'A Database Management System for Parallel Processing of CFD
Algorithms,' Parallel Computational Fluid Dynamics "92, Edited by R.B Pelz, et al.,
Elsevier Science Publishers, The Netherlands, pp. 9-23.
Chien, Y. P., Carpenter, F., Ecer, A. and Akay, H.U., "Load Balancing for Parallel

Computation of Fluid Dynamics Problems," Computer Methods in Applied Mecham'cs
and Engineering, Vol. 120, 1995, pp. 119-130.
Chien, Y. P., Ecer, A., Akay, H.U. and Carpenter, F., " Dynamic Load Balancing on
Network of Workstations for Solving Computational Fluid Dynamics Problems,"

Computer Methods in Applied Mechanics and Engineering, VoL 119, 1994, pp. 17-33.
Held, G., Ethernet Networks (Second Edition), John Wiley & Sons, New York,
1996.
Leach, R.J., Advanced Topics in Unix, John Wiley & Sons, Inc., New York, New

York, 1994

_r I--

AIAA 97-0027
Efficient Parallel Communication Schemes for
Explicit Solvers of NPARC Codes
N. Gopalaswamy, A. Ecer, H.U. Akay and Y.P. Chien
Computational Fluid Dynamics Laboratory
Purdue School of Engineering and Technology, IUPUI
Indianapolis, IN

35th Aerospace Sciences
Meeting & Exhibit

January 6-10, 1997 / Reno, NV

For permission to copy or republish, contact the American Institute of Aeronautics and Astronautics

1801 Alexander Bell Drive, Suite 500, Raston, VA 22091

w

EFFICIENT PARALLEL COMMUNICATION SCHEMES FOR

EXPLICIT SOLVERS OF NPARC CODES

N. Gopalaswamy, A. Eeer, H.U. Akay sad Y.P. Chien

Computational Fluid Dynamics Laboratory

Purdue School of Engineering and Technology, IUPUI

Indianapolis, Indiana 46202

A scheme for improving the eiticieacy ot com-
mtmications for the parallel computation of Euler

equations ia presented. PA.RC code is employed as

an example for analyzing the flow through a su-
personic inlet. The flowfield is divided into sub.
regions called _bloc_. _ The parallel computation

of the problem normally requires communication be-

tween each block after each time-step of an explicit

R.unge-Kutta integration scheme, rn the developed
procedure, the boundary conditions are fm_a for

k = 10 - 20 time-stel_ and blocks are integrated in

time without oommtmicsting with _ other dur-

ing this period. When the bouncLsry condition* are
updated, an oscillatory error is introduced into the
solution with & fun_entad l>erk>d of 4J_ time-stel_ ,

which is then filtered in time. As a result, the com-

munication c_t of parallel computing is signflicaatly

reduced. Exampks for steady and unsteady

are presented to demonstrate the applicability of the
developed procedure.

Introduction

During the parallelization of explicit schemes, the
e_ciency of the communication plays a critical role.

Especially for a structured grid, one can develop

explicit so.hexes where computational c_t is small
in comparison with the cammunication cost. In

the present paper the PARC code with an explicit

Eunge-Kutta scheme is chosen as the parallel nu-
merical algorithm to be studied, x Parallelhation of

thin code ha& already been discussed in a pnevious
paper. _ It k based on a block-based structure of the

data where the solution domain is divided into many

subdomai_ or "blocks". The global solution is ob-

tained by integrating the equations for each block

separately. The blocks are interconnected to each

other through an overlapping region or _terface,"
by one grid point. The solution scheme marches

in time while exchanging boundary values of each

block at each time-step. Figure 1 summarizes the
arrangement for the case of two neighboring blocks. _

The numerical inteB_stion of the grid points are
conducted inaide a block solver. The block solver

updates an interfa_ solver at in_ which then

communk_tes with the interface solver of the neigh-

boring block. Each interfacesol_ also updates its

block after receiving information from its neighbor.
As can be seen from thia figure, each block and its m-
teda_ solvers are on the same processor. The time

intervah for se_diag and receiving information be-
tween the bk_ks and interfscea can be di_ez_at, and
can be chosen based on the localconditionsJ The

distributionof the blocks among & given number

cg processorscan be optimized by distributingthe

bloc_ according to theircomputation and commu-

nicationrequirements.2,4

iw_m,orI Fmammf 2

!B_S_ Ix_f,mS_v_, liner*reSortB_Salve

Bk_kl Ia_q_ I i i _fam2 mo_k2
: i

t] :

Figure I: Blocks and

In Reference 2, based on the local stability con-

ditions, the time intervals for communicating be-
tweea the blocks and interfaces, as defined in Figure

I were selected. The resulting system was then load
balanced and considerableefaciencyimprovements

were obtained,speci_callyby reducing the commu-

nicationcc_. In the present paper, a briefsum-

1

Am_can Insimm ofAemnauncs andAsmma_s

maryof thia procedure sad the para]lelizAtioa took

axe provided. A further attempt to reduce the com-
munication cost is presented here _ince the stability

requirements for explicit _emes can be quite stria=

gent. Specific.ally, the comrn,n_Ation time interval
is further increMed, exceeding the limit suggested

by the local stability condition* at the interface. By

not updating the boundary of a block at required
time in_ the solution becomes discontinuotm
between the blocks. An error is introduced at each

boundary which produces high frequency spatial os-

cillations ins_e each block. Based on the study of

this error, a filteri_ scheme is developed, which cor-
rects the boundary conditions and eliminates the

hish frequency noise. By employing this scheme,
one can reduce the communication coet by 90% yet

maintain the same accuracy. The numerical results

presented in thi_ paper demonstrate applicationJ for

both steady and unsteady flows.

Background Information

For the para]]elization of the NPARC code, sev-
era] tools were utilized. A brief summary of these

took and the employed Ruuap-Kutta a]@orithm are
summarized here.

GPAR- A Grid Oriented Database

for Parallel Computing

GPAR 6 w_ developed specifically for data manag_

meat of block structured CFD algorithmL h in-
v_ivm two data sets: blocks and interfaces. The

grids in each block or in_ caa be either struc-
tured or unstructured. In addition, inUarfaces

caa be match., unmav.hinS, overlappingor aoa-
ore:lapping. These parameters, ohm defined by the

_pplicatiou programmer, can then be used by GPAR
to handle the low level requests between the pro-

cessors. Two primary low lever messs_ paseiag
libraries are u'_: APPL, developed by NASA

LeRC and PV_L The relationship between the com-

ponents is illustrated by Figure 2.

Explicit Runse-Kutta All[orithm

and Stability,

The governing Euier equations for inviscid flow are
cast in the following conservation _orm:

= 0 (1)
+

_ T10N
PROGRAM

GPAIt

APm.

Figure 2: Relationship of GPAR with the applicx-

tion program

where Q = (p,p_,ptr, p_,pE) T, and _ az'e the in-

viscid flux vectors. These equations are tranm_ormed

into computationa] coordinates and are solved in
strong conservation form by the NPARC code. Ad-

ditiona] source terms appear on the right hand side
of Equation I for axisymmetric flows. The NPARC

code can solve the Euler equations either with an
implicit Beam-Warming Llgorithm, or an explicit

mu/ti-stage, Rm_e-Kutta scheme. In the present

paper, a three-sta@e variant of the Runge-Kutta
scheme is considered. The Euler equation* are cast
in semi_ized form as follows:

dQ = A#-F# = RHS (2)
dt

where A is the space discretizationoperator op-

eratingon the vectorof conservation variablesQ.

Centraldilferencingisused forthe discretizatlonof

the spstia/domain. The three-stageRunge-Kutta

scheme used can be writtenas follows:

Q(0) = Q"

Q(1) = Q(0) + 0.et_tRHS(0)

Q(2) = Q(_) + o._t_ RHS(_) (3)

Q(3) ffi Q(2) +At RHS(2)

= Q(a)

where At is the time-step used for the temporal in-

tegration. A liaeanzed stability analysis for the one-

dimensional Euler equations in conservation form

diseretizedas definedin Eqtuttion3 yields the fol-

lowing CTL stabilitycriterion:

(u + a)At < 1.8 (4)
c = Az --

•,hem c isthe Cou_ant number in equation 4. The

amplification factor G(z) can be defined in terms

2

American Insfimm of AeronauticsandAsa_udcs

of the characteek_k polynon_al obtained from the

st_b_ty a:_ly_.

_n+l

Ic; -

G = I-:+0.6_-03_: (5)

z = IcsmO

where _ k the phase angle obtained from a Fourier
decomp<_ition in the frequency domain. The region

near 0 = 0 corresponds to the low frequency region,

while the region near 0 = _ _rn_& to the kigh

frequencies. The highest frequency resolvable by the
mesh corresponds to a wavelength of 2_c. Figure 3

contains a plot of the amplification factor G. It can

gO1

11_ 0

210_:

27_

l_wre & I_ for 0 < 9 < r, and c= 0.9

be seea fzom the figure that the amplification factor

G k appnmimately equal to unity for both high and

low frequency ranges. This impll_ that the low and
high frequency spatial waves are not damped by the

three-stage Runge-Kutta scheme. Artificial viscosity
is normally introduced to damp the high f_equency
oscillationL

Variable Time-Stepping

Fo¢ improving the dfickncy of the numerical in-
relation of the Eule_ equations, a variable time-

stepping procedure was implemented for each block
and interlace, z For esch block, by checking the CFL

condition for all the grid points inside the block, a

time-step was chosen to ensure stability as shown

b_low,
e

= Clrf,l + = D (s)

where /c k the coordt_te d]rec_a. Slmi]&]y, a

time-step was _ for an interface baaed on the
stability of the grid pointa ma that in_ For

supersonic points, the tn_ communicated only
in oae direction. For subeoni¢ points, an interface
communi_ted in both directions but at di_erent in-

tervak.

----4

ui+_

_-- Azl
AZ,,h = (a-u,)>O (7)

G -- Mft

From the above stability req_, the time-step
for each block and interface waa defined u an inte-

ger multiple of a basic thne-step. For steady flows,
where time-accuracy is not required, a local time-
step is defined from the CFL condition for each node

individually.

ImLE, a.w.a

Two test cases are chosen to investigate the e_ect
of the reduced communications. These cases were

also employed in the previous study of the NPARC
codeJ

Steady Flow: An axkymmetric mixed-

compression VI)C (Variable Diameter Center-

body) inletk considm_l under a supersonic

i_Jiowof M-2.5 and a subsonic compressor

face outflow Mach number M-0.3. s The 2D

versionof the NPARC code has an option to

handle axisymmetric flow also. The re£erence

inletpressurek 117.8 Ib/ftz,and the reference

iaiet temperature is 39,5 Ra_dne. The cowl-tip

radius of the inlet, Rc=18.61 inches k used
to non-dimensionalizethe lengths. The grid

for this inletconsistsof app_tely 4500
nodes, and is divided into 15 blocks, all of

approximately equal size as shown in Figure

4. A steady state solution is sought using

locad time.steppingfor All nodes in each block
with a uniform Courant number of 0.9 for all

nodes. The solutionis plottedin the form of

density at the midpoint of each interface for

all blocks every iteration. This test case is
chosen as an example of a small problem where

communication cost is large in comparison with

the computation ccet.

3

American Ins_mm ofAcmnauncs and Asax_matics

Uasteady Flow: The same grid LUustrs . in

Figure 4 is used to study the respoase • _ si-
nusoidal romper&furs perturbation &pp,.ed &t

the inlet sectioa. The amplitude of the per-
turbatioa is 5% and the f_,queacy is I00 Hz.

The density _ is plotted a_ one of the
subsonic interface8 downstream ot the normal

shock. The steady sta_e solution is obt.a_ed

_rst And thin the temperature perturbation is

applied. The reference pressure and tempera_
tare are 117.8 Ib/ft z and 395 Raakine respec-

tively. Variable time-stepping is uaed inside
each block, as described in equation 6.

10 11 12 13 14 IS
',iiiiiiiiiii' ',!!iiii:
ii_:_":::_, ,

1 2

F'_ure 4: Axisymmetric Case with 15 Blocks

Reduced Comm-nications for

Explicit Schemes

By using variable time-stepping considerable im-
pwvements in eifir.ieacy were obtained, z la orde:
to further reduce the communication cmt

by the stability conditiovs, one ca& further increase

the interval for ulxtating the interfaces. Aa exper-
iment was conducted as follows: _ grid points
on each block and interface have chopin their own

time-step, _Med on local st&billty coaditiom_ the
boundary conditions weR frozen for 10 time.stepe.

This led to both spatial and temporal oecillattons.

The magnitude of these _ was negligible

for supersonic interhK_ but significant Io¢ subooRic
interfaces. In F'_nu_ 5, the variation of density with
respect to tinm is plotted at the subsonic interface

between bioclm 8 msd 9 in _ 4 for the steady
flow test case. The solution is stable inside each

block, since the time-step chc6en for inte_atiou sat-

isfies the local stability conditiou for the grid points
inside the block. However, the solution is polluted

by a hish frequency noise emanating f_m the

coatinu]ty introduced on the boundary. A frequency
decomp_ition of the si_sJ in F'tffure 6 shows that

the high frequency oecillatioan axe associated with

distinct frequencies. They corresponded to & time

period of:

T = 4k_t (8)

7

J.

s
4

3

2
0 5c0 looo 1soo2_0 290034003800 4000¢800sooo

ulk Hurter

Figure 5: Density variation for k = 10

0.16

O.3

0.2
0.15

0.1

0.06

0
0

,,d.--.--- k J_J. t

OJ! 1.5 2 2.S 3 3.5 4

Frequency respond, of density variation

and its multiples, where k is the communica-

tion iat_-_d. The fr_uency in Figure 6 is non-
dimenm :_ as foL _s:

The same behavior w_ observed when k was in-

creased to 20, as shown in F1gun_ 7 and 8, although
the_e are maay more pealm observed _a the frequency

spectrum. This is due to the fact the frequeacles ex-
cited by the communication errors are much lower

than the previous case and interact with the correct
solution. This point will be further di_umed below.

Figure 9 shows the spatial cecilintiona developing

inside a block due to the error introduced by freezing
the lx_ndary conditions for k = 20. The frequency

decomposition of the signal in Figure 9 is shown in

F_',.re I0, which i_dicates & significant cecillatiou

x wavelength of 2Az near the boundary.

In the following, the source of the above errors
introducedby reducing the communications is dis-

cussed,and a &1fetingtechnique isutilizedto elimi-

4

American Institute of AeronauticsandAsmmautics

q

S

4

3

0 _00 10001500 2_00 2800 3000 3e00 4000 4600 5000

IWdon 14unv_

F'_are 7: Density variation for k = 20

7

i 41.tl

|.4

L2

|

Si

S.|

SA , , , ,
0 S 10 1$ 20 2S

Grid I_mt trmx

3O

F_Itze 9: Instantaneous density vaziation inmde a
block for k = 20

0_

0.18

0.25 0.1102 o,14

o.15 o.12
0.1 0.1

O.Oe

O.OS O_

o __.l _,I_L o_

1 2 3 4 S I 7 O.O2

Fis_-e S:
for k = 20

s_mmmmtem Fm<mnW.,"
Frequency respoase of density variation

hate the oscillations while maintaining the accurate
solution.

Error Analysis

An investigation was carried out to explore the ori_u
of the above c_:i/lations. The following simple model
was defined to study the problem.

For the case of two blocks shown in Figure 11,
the Bow k Mmuned to be oae-dlmem_ from left

to right _d subsonic. The interfacesbelon_g to
Block [and Block 11 overlap each other only by one
grid point. S'mce the flow _s subsonic, two waves
propagate information downstream with speeds u
and u + a while one wave propagates information
upstream with a speed o/u -- a. u is the fluid vek>c-
ity while a Lsthe acoustic speed for the fluid.

During the parallel computation, point I _ u
thedownstreambouncLsz7conditionfor Block _ and
point3 serves u the ul_tresmboundary condition

forBlock11 Points2 and 4 arecomputed aa inte-

riorpointsofBlocksIand TTrespectively.During

the time-LnteiFatk>n,thesolutionvaluescomputed

ol a_4 aY'3 I/2 3W4 z

F_um 10:. Spatial L'equency distribution of den_ty
variation i_dde a block for k - 20

st point 2 overwrite the previotm values st point
3, every _ communication betwee_ the interfaces

takes place. Simuttaaeoualy, the values computed at
pc/at 4 overwrite the previous boundary condition
at point 1.

If the communication is halted for a specified in-

tervaI, th_ the time-integration in Blocks [and

H proceed with the boundary condition ren_-ing
frozen st the va/ues received during the past com-
mtmication step. Hence an error is introduced into
the time-integration procedure in both blocks. If the
semi-di_retized Euler equations can be expressed as
follows:

= A. Q
dt

for a llnearized operator A., the error obeys the same
difference equation amthe solution. Hence, if we call
the error X, the following relation is valid:

dX
= A. X (zz)

An,.mc_ Insdmteof Aenmautics and As_dcs

Block I

U>O

X'(n+k)

1

b4 BI II

F_ure 11: Mode/o(Feedback System

One caa trace the propagation of the error

through this model. Assume th_ Xl(n) _ _- er-

ror in the boundary condition, first introduced at

a time-step n, at point 1. If the boundary condi-
tions are held fixed for k thne-steps, this ea'ror will

propa_te upstaeam in Block I to point 2. Since

the error also obe3_ the same dkcreti2_ equation

ms the solution for a linear operator, the error will
be modred by the thne it propagates to point 2 to

become X,(n + k) are: k ".;.ne-_. Whea commu-
nication occurs at this instant,X_(n+k) is replaced

by X_(, + k). Over the next k steps, the error st

point 3 propagatm to point 4 and aJao beta modred
by the integration procem to become X4(n + 2k).

Thus, when communication now occurs at n + 2k,

Xt(n + 2k) becomes equal to X4(n + 2/0 and this
process repeats itself. Tl_ can be summa:iT_ with

the fotlowing set of expreesions:

x,(.+ k) = A "x,(.) ,

x3(.+ k) = x,(n+ k) ,

x+(.+ 2t) = A .x3(.+ t)

Xt(.+2t) = X4(-+2k)

x1(-+ 2k) = I,"I,-x,(.)

where 11" and/_, are operatorsrepresentingthe in-

tegrationprocessinsideeach block.The hurtexpres-

sioninequation (12)providesa relationshipbetween

the error introduced at time-e_ep n end n + 2k. It

willbe shown in the followingsectionthat spatial

oscillations produce a negativefeedback which can

be approximated with the following relationxhip:

/I..6- _ -I (13)

Ba_ed on thisapproximation,one can describethe

oscillationsin time at a boundary point by the fol-

lowing retatiomflxip:

ItCh + 2k) -" -Xx(n) (14)

Taking a Z-Transform of the above relation leads to:

:_X(z) = -X(z)

(l+z_t)X(z) -" 0 (15)

z _ = - 1

The $olution of the above equation provides 2/_ =

2m_r + _r,m = 0,1,2,3 where z = re I#. The

fundamental solutionis 2k@ = r, corresponding to

m = 0. Hence the fundamental f_quency ofoscilla-

tionscorresponds to a period ofT = 4kAt.

Origin of the Negative Feedback

As suggested in Equation 13, the net effect of the two

operators /_. sad /_- leads to a system with nega-
tive feedback. In order to tmderstand thisbehavior

one lute to study the difference repremmtation of the

employed three-_age explicit Runge-Kutta scheme.
For a wave traveling downstream with a wave speed

cg u + a,one can writea di_'erenceequation as fol-
lows:

dQ = (u + a) Q_-t - Q_'t (16)
dt 2A_

where (u + a) isa constant. The explicitRunge-

Kutta differencerepresentationyields:

Q_+t

where

aQi_a - oaQ'__, - a4Qn_t

+(1 + 2_)Q'_

(17)

= -0.15c_

= 0.i_-_- o._c (18)

_ = O.04ScJ

(u + a)At
c =

Az

The differenceequation (17)isthen modified near
the boundaries and c_t inmatrix form as follows:

{AQ} = {Q_+t-Q_'}; i=2,3,...,N-1

{AQ} = [al{Q;'} + {a}'Qc + {a}"Q_ (19)

6

American Insamm of_cs and Asn_ta_s

where {_Q} denotes the vector of unknowns, N
the total number of 8rid points, sad QL, Q_ are the
left and right boundary conditions respectively. The
vectors{B)'--d {B}"havethef owi

(B)' --

Equations 20 and 21 for c = 0.9, all three non-zero
entries in {B}' are p_itive, while the signs of the
three aOnoZ_O entries in {B}" a/temate. Therefore,
a d_nurbance applied un the left boundary sets con-
vected downstream with little damping as expected.
On the other hand, the one applied on the right
boundxry produces a high f_equency cecil_ioa of
wavelength 2_z which travels upstream again with-
out being damped by the df/_'ence scheme.

I.s

{B)" = -as (21)

-at] o
In the above, at = 0.5c-0.045c_; furthermore, &new n.0 --

r_lO_
variable is defined as as ffi 0.09_ - 0.5c. One can n,.0
also expre_ the matrix [B] in the following form: _0

[B]= (22)

as -a2 -as
-as 2a_ a4 -a_-as

-_-a4 2_ _ -_-_

as -_-_4 2_ a4 -_-(_

-1

-I.$
0

as -a2-as

An eigenval_vector decompositiol_ of the

matrix [B] shows tl_ the scheme is stsble s/rice
the real part of all the eigenvalua is ne_stive ex-
cept for one which is equal to zero. The se_o eigen-
value corresponds to the hi_hest frequency spa$.ial
oecillation with a waveknSth of A = 2A= and hence
there is no dsmpinS for then high h_quency ,lineal
waves. This behzviar was also observed for Euler

equations from the]inearized stability sna/y_s de-
scribed in Figure 3. The introductioa of an error
_ on the left bouadxry excites the low frequency
waves which are coavected with little damping for
p<_itive c. Thus, one can state that/1" _ 1. On the
other hand the introduction of an error Q_ st the

right boundary excites the 2_ wav_ sg_a with no
clamping. This results in/2" _' -I.

The behavior described above can be illustrated

by a simple one-dhnensiona/ example as shown in
Figure 12. An error of unit magnitude was applied
at both boundaries of a block, and c=0.9 was chceen
to advance for a = 30 time steps. It can be se_ from

lO 20 30 40 $0 so ?o 8o 20 _0o

Pore!index

12: Convect_n of a dkturbance applied on
the two boundaries of a block by the _Kutta
Scheme

In the above model equation, no artificial viscosity
was introduced. In the _olution of Euler equations,
when an error i_ introduced on the boundary of a

subeonie block, after waiting a reasonable number of
time-steps, one can expect that it will &ppesr at one
grid point downstream of the boundary with appr_-
imately the same magnitude. On the other hand,
the same m_rorwill appear at one point upetream of
the boundary with a negative sign. This behavior
is distinctly obeexved for subsonic flows in the so-
lution of the Eider equations. For supersonic flow_,
wave. traveling aredamped by ,iing nu-
meric2d visc_ty; thus, the feedback and result_
mcilia ns arenegligible.

At this point, one can also comment on the d_'-
ferences observed in the _uency response of the
density variation for k = I0 and k = 20 as shown
Ftgures 6 and 8. If the communication is delayed
too lohg, there k a coupling between the waves orig-
inating from di_erent boundaries as well as waves
reflecting bare Thus, for k = 20, one observes a
more complicated frequency response.

Filtering of the Oscillatory Signals

F_m the dhtcu_on of the previous sections, it can
be deduced that the freezing of the boundary con-

7

Ame_can Insumtc of Acn_au_c_ and Asu_au_s

ditions introduces a high frequency e_ror into the

solution with a dk_cl period of 4k£t. Since the
frequency of the noise ta known, one can design a
low-pus filter to _ the _ frequency noise

and allow the solution to paum through. To desert

a simple filter, a movi_ average was employed. As

described in r_u'e 11 the computed solutions at
points 2 and 4 are filtered as foUow_

j_.,q

j,,,4
1 _ _n-jxb

¢_' = iz.,'4 (_)

where k is the communication interval The right

hand side of Equation 23 involves the raw data ca/-

culated at every k time-steIm at pointJ 2 and 4. In-
termediate time-stel_ are not utilized in filtering.
The left hand side defines the filtered value of the

boundary condition which is commtlnleJtted to the

neighboring block. Thk operation corresponds to
applyi_ an Ffnite Impulse Response (FIR) filter,
where its z-trandorm can be expremed _ follows:

Steady Flow

For the steady flow testcase described previously,

a hue case solutionis obtained initiallyby com-

municating every time-step. Then, Rr_, the com-

munication be frozen for 10 steps and the resulting

solution be filtered at ev_.ry communication step be-

fore being sent to the neighboring inter6tce. Local
thne-stepping k used inside each block for both the

base case and the case with the filter.Figure 14

shows the densityvariationat the mid-point of the

subsonic interlacein block 9 in Figure 4. As can

be seen from thisfigure,the same steady statesolu-

tionisreached after5000 time-stepefor both cases.

There are some di_e_ences in the transient behavior

of the solution. F'_re 15 shows the frequency spec-
trum of the same density for both so|utions. One
can observe that the solutions are accurate within a

certainf1"equency range. Secor_ communication is

frozenfor 20 stepeand the solutionisa_ain filtered

before communicstion. F'gure 16 shows the result-
ing density variation for the same subsonic in_,

and Figure 17 shows the frequency distribution.

b=_ +2z-2 +3z-s +4z-4 +3z-6 +2z-e + z-r _:" ' : ' ' • * " |

0 500 I_I!I00__3_I0040(X)_I000

Figure 14: Comparion of solutions with filtering

(k ffi I0) and the base cue
02

0.1

0.2 0.4 0.8 U 1 12 1.4 I._ lJ

F'_re 13: Ft-equency re, potato of the FIR filte_

In Figure 13, the normalized _ of the filteris

plotted against non-dinmnaionalized frequency _'.

As can be seen from this figure,the selectedill-

ter provides zero gain for a non-dimensional]z_
quency of unity or T = 4k_t.

Thk steady flow case be solved on varyin_ num-

ber of processorsto compare the savingsin elapsed

time due to the reduced communk_tion. Two sys-

tenm were used to solvethe cases;i)an IBM SP2

to_e: with 32 processors using a fast commtmica-
tiou network (HPN) locatedat Poughkeepeie, New

York, and ii) an IBM SP1 tower with 16 processors

usingan etheraet based communication network lo.

caredat NASA LeRC. The timingsobtained arepre-

sented in the form o(speedup and efficiencywhich

8

In_imm of Aen_au_i_ md Asm_au_cs

¢

o_

o.3

°:o._.I

o.1

o.c6

o

O_L4 ,, j i

0.1

o2

0.1S

_ , i 0 I I

o_ 0.4 o., u _ _.2 _.4 _., o o_s _ _._ 2 _ _ _._

Figure 15: Comparison of the frequency response of Figure 17: Comparkon of the frequency response of
solution with _]tering (k : 10) and the base case solution with _ (k : 20) and the b_e case

S..S 10

4.5
|

4

3.5 4

3 2

2.S 0 ' , , , , , ,
0 500 1(_01S0020002_00300031fl00400048005000 0 2 4 I l 10 12 14 11

aWaOonIdunV_ Humbero_I_om4mrs

Figure 16: Comparion of solutions with filtering Figure 18: Comparison of speedup with filtering
(k - 20) mad the base cue (k -- I0) sad the hue case

can be defined _s fdlow_

Speedup =
Elapsed Tune with I Procem_r (k=l)

Elapeed Thne with m Procem_m
(25)

= SPeedu-------2 (26)
in

F_pm_ 18 sad 19 shows the speedup and eIB*
cieacy for tl_ nesdy ¢a_ for k = I0 with 61_
and the hue came oa both types of networks. As
can be seen tram theJe _ures, ahigh level d d-
fidency k _, _ when a small problem
with 4,592 _-id points is nmaing over 6-12 proces-
sorL Speedup is improved conmderably, since the
communication cost is reduced by 90-95%. The ef-
ficiency improvement is significant, mainly due to
the relative importance of the communication cvet
for the base case. It is also observed that for a slow

network like ethernet, communication dominates the
total elapsed time for the computation of the prob-
lem, and hence dramatic improvementa are obtained
in the speedup sad e_dmcy when communication
is reduced by 90%.

Unstead 7 Flow

An unsteady flow test cue is chosen u described
previously. A base case wu run by communicat-

ing every time-step to obtain an accurate solution.
Between 400-1800 time-steps _ employed to inte-
grate ove_ one period of the c_lation for d_erent
hloc_. Ftgure 20 Lllustrstes the variation of denmty
at the midpoint of the subsonic interlace of block 9
in F_ure 4 for k ffi I0 and k -- 20 without _ltering.
For k = 10, unsteady response is quite accurate. In
this case, it w_s observed tha_ one can freeze the
boundaries for k -- 10, and obtain reasonably ac-
curate solutions even without filtering am shown in

20. This may be due to the fact that the
thne-stelm for the unstesdy flow test case are much
smalkr than thcse for the steady flow case. In the
same _, it can be seen that communicating every
20 time-steps introduces an error which eventually
causes the solution to diverge. For this case filtering
can be used to eliminate the e_or and recover the

wave of frequency I00 Hz. Figure 21 illustrates the
var_tion of density at the same location in block

9

American b_m_e of _ and Asmm_dc_

2

I

o.s

o
o 2 4 6 8 to t2 t4 ill

NumewolP_mmuN

F'gure 19: Comparison of efficiencywith filtering

(k = 10) sad the base case

9 for two filteredcases with k = 10 and k = 20

in comparison with the base cue. A_ can be seen

from Figure 21, the _ introduc_ a slightlag

fork --20. The designofanother filtermay elimi-

nate the lag observed in the k -- 20 case. Also, for
the same case, inaccuracies are observed which are

Msociated with the startup transien'm.

The frequency spectrum of the solution for the
base cMe sad for two filtered cases with k = 10

and 20 are show_ in Rgurcs 22 sad 23. There k

very little _ce betwee_ the f2_que_cy content
Of theaethree solutions.

9
s.$

]'7.$

6,$
6

&S
S

4.IS

_0 t t I "500 I000 I_I0020C02_0030C0:35004_00.4800_

Numm,rV_

Figure20:.Comparison ofthe solutionfork = 10,20

without filtering

_gunm 24 and 2,5show the speedup sad eil_iency

for the computation of the unsteady flow case on

varyingnumber of procemon for both types of net-

works. Again itcan be seen from the figuresthat

reductionof the communication by 95% contributes

toa significantimprovement in the speedup and ef-

ficiency.However, the improvement in speedup and

efficiencyisnot as high as compared to the steady
flow case. This Lsbecause of the _ce in the

time-stepping schemes between the two cases. In the

u
ks

8.8
l.$
IL4

S.3
t2

I.I
I

$.g
0

m

500 t0001_r_02_02B_0.1_0380040004M0S000

F_m'e 21: Comparison of the solutionfor the base
caae and k = 10,20 with filtering

0.18 . , •
0.18 1

0.14 _,

i o.12 i

0.1 '
I

o..oi

0,o4 i

o.o4

o.o2

4
o 0.06 0.1 0.1S 02 0.2S 0.3

,ondt,w,.W_ _ ."

t
o_ 0,4

F1gu_ 22: Frequency response of solutions for the

base caae and k = 10 with Rltering

stesdy flow case,localtime-stepping isused which

means fork = I0,communication takesplace every

I0 computation steps for allinterfaces.In the un-

steady flow ca_, ea_ block picks s certain time-step
which can be _t from othe_ blocks. Hence,

for k = 20, the numbe_ of oomputstion steps be-

_ore communication occurs can vary from 4 to 20
for various blocks. This caa cause communication
bottlenecks which could aomunt for the lower e_-

ciency improvements when compared to the steady
flow ¢Jum.

Conclusions

In thia paper , a filteringprocedure is presented

to improve the efficiencyof pm-alkl computation

of Euler equations using aa explicitscheme. It is

d_nonstrated that,in terms of obtaining an accu-

rate solution,the time-stepchoees by the stability

conditionforeach block may be too restrictive.One

can reduce the communication between the blocks

by 90-95% and stillobtain an accurate solution.

10

American InstimmofAenmamics and Astronautics

t

¢

0.18

0.18

0.14

0.120.1

0.06

0.04

°0 O. 0.I 0. I$ 02 025 0.3 0.16 0.4

Figure 23: Frequency response of solutions for the

base ¢_e aad k = 20 with filtering

0

5

0

Num_ d Pmcmlml

Figure 24: Comi:m'isoa o[speedup with Rltecing
(k = 20) ,-,d the !_ cue

The filtering procedure coupled with the varisbk
time-stepping schemes enables efltclent utilization of
the parallel algorithm for both steady aad unstz_y
flows.

It is mustrated that one can commtmicate with

neighboring blocks only when aeczssary tad im-
prove efficiency. H_y of the flow-field and
the computer systems is exploited for this purpose.
Study of the interface conditions in the fzequency
domain provides imfigh¢ into the problem. Simi-
lax filters can be developed for schemes other thaa
Runge-Kutta schemes.

Acknowledgements

Tlds re,esrch wu _mded by the NASA Lewis Re-
search Center und_ NAG3-15TT. The suthors &p-
preciate the support provided by Rich Blech, Gary
Cole sad Joong]me Chung of Computational Tech-
nologies Branch of NASA LeRC.

11

1.1

1.4

1.2

l'0.8

0.0

0.4

O-2

0
0

FiguR 25:

2 4 6 8 10 12 14 1|

Numl_ ot Pmcls_rl

Comlmri_n of ei_iency with Kltering
(k = 20) sad the base case

1. G.K. Cooper And J.R. Sirbaugh; "The PARC

Code: Theory sad Ussce," Arno/d gn_n_ermg
Devdopme_ Center TR-89-15, 1989.

2. N. Gopa_wamy, H.U. AJ_y, A. Ece¢ a_d Y.P.
Chien, _P_tiou sad Dymm_ic _ B_d-
sacing of NPARC Code_" ALkA Paper No. 96-
3302,July1-3,LakeBuena Wm_.a,FL, 1996.

3. N. Gopalaswamy, Y.P. Chien, A. Ecer, H.U.
Aksy, B.A. Blech aad Gr.. Cole, _An hves-

tigstion of Load Balancing Strategies for CFD
Applications on Parallel Computers," Parallel
CFD '95, June 26 - 29, 199,5,Pasadena, Cali-
foraia_ U.S.A.

4. Y.P. Chien, A. Ece_, H.U. Aksy, F. Carpenter
and R.A. Blech, "Dynamic Load Balancing on
&Network of Workatations for Solving Compu-
tational Fluid Dynamics Problem_" Computer
Metho_ in Applied Mechaaicz and Engine_-
ing, voL 199, pp. 17-33, 1994.

5. H.U. Akay, R.A. Blech, A. Ecer, D. Erco_am,
B. Kern]e, A. Quealy sad A. W'dl;_mJ, "A
Database Management System for Parallel Pro-
cesaing of CFD Algorithms," Parallel CFD '92,
Edited by P,.B. Peaz, et al.,Elsevier, Amster-
dam, pp. 9-23, 1993.

6. J.K. Chung, "Numerical Solution of a Mixed
Compr_ion Supersoaic rnlet Flow, _ AIAA Ps-
per No. 940583, 32nd Aero6pace Sciences Meet-
bag, Reno, Ne,,m:la, 1994.

II

American Instimmof AcronauncsandAsU'ocma_s

FfLTERING TECHNrQ UES "IN R4RA LLEL COMPUTING

Filtering Techniques in Parallel Computing

A. Ecer, H.U. Akay and N. Gopalaswamy

CFD Laboratory
Purdue School of Engineering and Technology, IUPUI
Indianapolis. Indiana 46202

i. INTRODUCTION

Our current research efforts are aimed at improving the efficiency of computing on parallel comput-

ers. In working with MIMD machines, we have chosen the path of domain decomposition as a basis

for parallel computing. The problem to be solved over a given domain is parallelized by means

of dividing the domain into many sub-domains, called blocks, and solving the governing equations

over these blocks. The blocks are connected to each other through the inter-block boundaries,

called interfaces. These blocks can then be allocated to certain processors in the parallel comput-

ing environment, and the solution of the problem over the entire domain will be achieved by solving

the governing equations over each block in parallel (Akay 1993, Chien 1994, Gopalaswamy 1995,

1996).

.4. ECER, H.U. AKAY and N. GOPALAS_:4MY

Many sub-problems, one for each block, are solved in parallel while they have to communicate

in terms of boundary condRions specified at their interfaces. Such an approach can be simplified by

assuming that all the blocks are of equat size and require identical computational effort, and that all

the processors have identical computation and communication resources. In such a case, one would

perform identical computations on each processor and after exchanging messages synchronously

proceed towards a solution in a parallel fashion. Such an approach of homogeneous parallel com-

puting may not be very efficient. First. the available computer resources may be heterogeneous.

Second. many large problems which require parallel computing are rather complex and cannot be

defined as a homogeneous problem. For the case of fluid mechanics problems, each flow region

(block) may require a different level of grid refinement, solution strateg-y and computational effort.

Therefore. we expect that the assumption of homogeneity is too restrictive. Although it simplifies

the parallelization process, it produces inefficiencies.

Our efforts during the last two years are aimed towards developing schemes which are optimum

locally in each flow region. We chose to employ filtering as a way to determine the accuracy and

stability conditions for each block and improve the efficiency of computations. Implementation of

filtering techniques for improving communications between the blocks is discussed in Gopalaswamy

(1997). In this paper, we discuss the utilization of filtering for increasing the efficiency of compu-

tations inside each block as related to the accuracy and stability of a _ven numerical scheme.

2. FILTERING OF BLOCK BASED SOLUTIONS

In using a given numerical scheme, one can improve the efficiency of computations by studying the

spectral behavior of the solution. Multi-grid techniques employ coarse grids to act as filters for the

solution on fine grids and yet speed-up the rate of convergence. Here, we will be applying classical

filtering techniques.

The first problem to be studied is the stability of computations inside a block. For each block,

the stabilir, y ccwdition as specified by the Courant number calculated for all grid points dictates the

time step for the block. For obtaining a steady state, one can sacrifice time accuracy and choose a

local time step for each grid point. For explicit schemes, the time step chosen by the stability limit

is too restrictive. On the other hand, it is known that for many schemes the stability limit can be a

function of the spatial wavelength of the Fourier components of the solution. If one can filter some

of the high frequency components of the solution, the time step can be increased and the efficiency

of the algorithm can be improved, as it will be discussed below for two different schemes. It is also

observed that since the discretization errors are larger for the high frequency components of the

solution, filtering may not destroy the accuracy of the solution. One then filters the high frequency

components of the output in space before proceeding with the next time step. If the objective is

to calculate a steady state solution, once the solution converges to a steady state by using a large

time step, the filter can be reduced or removed and inte_ation may continue with a smaller time

step. This is similar to the implementation of the multi-grid method, when the filter is switched

on and off to obtain an accurate solution with faster convergence.

2.1. FILTERING FOR ACCURACY

The following convection-diffusion equation is studied as a one-dimensional example, for the pur-

poses of investigating the usefulness of a block-based filter to improve stability conditions:

FILTERING TECHNIQUES L\ PARALLEL COMPUTING

wt + uw= = ctw== (1)

First a difference equation is obtained by a forward difference approximation of the time-derivative,

upwind differencing for the first order space derivative, and centered differencing for the second

order space derivative. The resulting difference equation can be written as follows:

At Ax (Az)_

A yon Neumann type of analysis leads to the following expression for the single-step amplification
factor:

n+I

wi - G = (1-c- 2d) + (c + 2d)cosO- /'csin0 (3)

ot Atwhere c = a_x=_tand d = (-X_x_' The equation for G is that for an ellipse centered at 1 - c- 2d with

a major axis of c + 2d and a minor axis of c when drawn on the complex plane. Figure l shows a
sketch of G.

J lmag

""" ""-..,(L=I

b

Real

3

2.5

2

1.5

1

0.5
0 r,.,/12 :r.,/6 rJ4 rd3 80r,./'2

Phase Angle e

llll

Figure 1 Representation of the function G in the complex plane.

If we define a wavenumber k._ = o over a uniform grid, then we can see that all wave numbers

are stable when the ellipse lies inside the unit circle on the complex plane. The three stability

conditions are:

• c + 2d < 1 ; implies that the center of the ellipse will lie on the positive real axis.

• c < 1 ; implies that the minor axis of the ellipse is less than the radius of the unit circle.

4 A. ECER, H.U. AKAY and N. GOPALASWAMY

2d implies that the curvature of the ellipse is smaller than the curvature of theoc-<c4- ;

unit circle close to 0 = O.

The first condition combined with the second is the most restrictive. The last condition is also

important since it directly affects the low frequency waves (kx _ 0). As can be seen from the

figure, violating the first two conditions allows the ellipse to _row on the negative real axis as

well as the imaginary axis. Only waves up to a value of 0o are stable, for other values of 0, the

amplification factor G lies outside the unit circle and hence _ow with every time-step. Since

instability is caused by the high-frequency waves, they can be filtered out. However it is important

to preserve the low-frequency waves, and hence the last condition must always be satisfied.

The following example problem was studied in order to obtain a better understanding of the

above phenomenon. A sinusoidal signal was convected and diffused in a large domain f_ with a

constant speed u = 0.02, and f_ _ [-5, 5], with Ax = 0.02 as shown in Figure 2. The diffusion

constant a was varied in order to yield different diffusion numbers d.

1

_- 0
_b

-1
0

x

U=O.02 m/s -->

Figure 2: Sinusoidai signal convection and diffusion.

The value of cos0o is plotted in Figure 3 for various c and d. This can be used to find the cut-off

frequency above which waves become unstable.

3

02S

2

15

1

OS

h I L L

C

c_-d 2d-I
Figure 3: Values of cos 0o > -_(c+d-----5+ - 2d

FrLTERING TECHNIQUES [N PAtL4LLEL COMPUTING 5

A low-pass filter was designed to filter out high frequency waves. A combination of c = 1.01 and

d = 0.03, which corresponds to a 00 = 78 °. 1.37 rad, was chosen to advance the solution for 50 time

steps. The sinusoidal signal is convected over a distance 50A.c = 1.0 and simultaneously diffused.

For these conditions, the system slightly exceeds the stability limit and one can still integrate the

equations for a short period. In Figure 4, the solution after 50 time-steps with and without filtering

is shown. It can be seen that the high frequency error has been damped out by the filter yielding

a stable solution. The frequency content of both solutions is displayed next in Figure 5 where the

"5

1.5

1

OS

0

-05

-1

-1.5

-2
0

Unliltered --

0.5 1 1.5 2 2.5

1

0.8

0.6

0.4
5_ 0.2

0
-0.2

-0.4

-06

-0.8

-1

0

Filtered --

O.S 1 1.5 2 2.5 3

× X

Figure 4: Computed solution after 50 time steps for c=l.01 and d=0.03.

error shows up in the high frequency region. The filter transfer function is also plotted in the same

figure yielding zero gain for the high frequency region.

1.2

0.8

0.4

02

0 "_¢'_""

0 0,5

Filter Filtered
Unfiltered 0.9

0.8 I-I' L

- t'i0.7
06

, Jli"°'._',i/ 0.3
Ii

A ii i!J 0.2
.,:i!l !) ,_/

\ _---,_ _ 0.1
0

1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3

Phase Angle in Radians Phase Angle in Radians

Figure 5: Frequency response of the solutions.

2.2. FILTERING FOR ACCUR.-_CY AND STABILITY

Filtering techniques can be employed for improving both the accuracy and stability of a numerical

scheme simultaneously. When the time-step is increased, one has to control the level of accuracy.

A multistage Runge-Kutta method was considered as a second example. The one-dimensional

convection equation was used to study the behavior of this scheme.

wt + uw_ = 0 (4)

A. ECER. H.U. AKAY and N. GOPALAS_K4MY

dw_ 9 i_ [- .9_+ t
-- = u - RHS (5)
dt 2Ax

The spatial derivative is first discretized with centered differences and the Runge-Kutta method is

applied as a separate time-integration of the semi-discretized equation above. A three-stage variant

of the Runge-Kutta method leads to the following set of equations:

9,(0) = 92

w,(t) = w_(O) + O.6AtRHS(O)

w,(2) = w,(0) + 0.6AtRHS(1)

= w,(0) + AtRHS(2)

w2 *t = 9i(3)

(6)

where At is the time-step used for the temporal integration. Assuming u is a constant, a yon

Neumann type of stability analysis leads to the following stability criterion:

uAt
csin0- < 1.8 (7)

_x -

where 0 is the phase angle resulting from a Fourier decomposition of the solution in the spatial

frequency domain. Correspondingly, the stability polynomial becomes:

G(z) = 1 - z + 0.6z 2 - 0.36z 3 (8)

where z = /csin 0. In Figure 6 a plot of the stability polynomial is shown for two Courant numbers

c = 0.9 and c = 3.0.

From the curves it can be seen that the amplification factor IGI is close to unity for both very low

frequency (0 _ 0) and very high frequency (0 _ 7r) waves. The highest frequency (7r) corresponds

to a wavelen_h of 2Ax. The stability polynomial indicates that waves with a wavelength of 4Ax

are the ones to become unstable first.

Utilizing a higher Courant number improves the efficiency of a numerical algorithm, but most

of the high frequency waves are unstable for higher Courant numbers. However, using a filtering

technique to identify and correct the unstable waves allows one to convect a group of waves at higher

Courant numbers. If we assume that c=0.9 provides an accurate solution, we have to design a digital

filter to convert G(3.0) to G(0.9) to obtain the same level of accuracy. We would like to construct

a G for a Courant number of 3 which approximates the G of c = 0.9, i.e. G(3.0) -_ G3"34(0.9).

Figure 7 illustrates the accurate transfer function, G(0.9) and the desired transfer functon for the

filter, GF=G334(O.9)/G(3.0), where G(3.0) is the transfer function for the Runge-Kutta operator

with c = 3.0. Also shown in this figure are the transfer function for the derived digital filter,

GFD, and the combined transfer function of the Runge-Kutta operator (c = 3.0) with the filter,

GFC=GFD*G(3.0). As can be seen from this figure GFD represents a low-pass FIR+IIR type

filter.

FfLTERING TECHXIQUES IN PARALLEL COMPUTING

35

Figure 6: IGI for 0 < 0 < 7r and c = 0.9.3.0.

The one-dimensional convection equation is employed to convect the sine wave by using the

3-stage Runge-Kutta scheme at a Courant number c = 3.0 following the approach outlined above.

The solution of the problem is plotted in Figure 8 at different time-steps. The developed digital
filter enables the convection of the waves without diffusion and without violating the conditions for

stability.

3. CONCLUSIONS

As discussed in this paper, efficiency of a given solution scheme can be improved by filtering. Our

intent is to employ filters locally for each block in parallel computations. We can both monitor and

control the speed and accuracy of the computations inside each block by the proposed scheme.

REFERENCES

Akay H.U., Blech R.A., Ecer A., Ercoskun D., Kemle B., Quealy A. and Williams A. (1993)

A Databa:_.e .Management System for Parallel Processing of CFD Algorithms, Parallel CFD '92,

Edited by R.B. Pelz, et al.. EIbevier, Amsterdam, pp. 9-23.

Chien Y.P, Ec<_._'A.. Akav H.U.. Carpenter F. and Blech R.A. (1994) Dynamic Load Balancing on a

Network of Workst, at ions tbr Solving Computational Fluid Dynamics Problems, Computer Methods

in Applied Mechanics and Engineering, vol. 199, pp. 17-33.

Gopalaswamy N., Chien Y.P., Ecer A., Akay H.U., Blech R.A. and Cole G.L. (1995) An Investiga-

tion of Load Balancing Strategies for CFD Applications on Parallel Computers, Parallel Computa-

tional Fluid Dynamics, Edited by A. Ecer et al., Elsevier, Amsterdam, pp. 703-710.

Gopalaswamy, N., Akay H.U., Ecer A. and Chien Y.P. (1996) Parallelization and Dynamic Load

Balancing of NPARC Codes. AL4A Paper No. 96-330'2, 32nd AL4A/.4SME/SAE/ASEE Joint

Propulsion Conference. Lake Buena Vista, FL.

,4. ECER, H.U. AKAY and N. GOPALASWA:_[¥"

9

7

6 _

5 x x
4 x

3 X x
' x

0 0.5 1 1.5 2 2.5 3

G(0.9)
G(3.0) --_----

GF_

Phase Angle in Radians

¢-.m

(D

2.5

3.5 3.5

2

1.51

0.5

0

0

GF-_-----
GFD
G _

i ..

0.5 1 1.5 2 2.5 3

Phase Angle in Radians

Figure 7: Transfer functions for the Runge-Kutta operators and the filter.

Gopalaswamy N., Ecer A., Akay H. U. and Chien Y.P. (I997) Efficient Parallel Communication

Schemes for Explicit Solvers of NPARC Codes, ,4L4A Paper No. 97-0027, 35th Aerospace Sciences

Meeting, Reno, Nevada.

FILTERING TECHNIQUES IN PARALLEL C03,[PUT[NG

¢)

¢-

1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1

X

Figure 8: Solution after 50 steps with filtering and c = 3.0.

AIAA 98-061 6
Digital Filtering Techniques for Parallel
Computation of Explicit Schemes
A. Ecer, N. Gopalaswamy, H.U. Akay and Y.P. Chien

Computational Fluid Dynamics Laboratory
Purdue School of Engineering and Technology, IUPU!

Indianapolis, IN

36th Aerospace Sciences
Meeting & Exhibit

January 12-15, 1998 / Reno, NV

For permission to copy or republish, contact the American Institute of Aeronautics and Astronautics
1801 Alexander Bell Drive, Suite 500, Reston, Virginia 20191-4344

DIGITAL FILTERING TECHNIQUES FOR PARALLEL

COMPUTATION OF EXPLICIT SCHEMES

A. Ecer, N. Gopalaswamy, H.U. Akay and Y.P. Chien

Computational Fluid Dynamics Laboratory

Purdue School of Engineering and Technology, IUPUI

Indianapolis, Indiana 46202

Abstract

A computational technique is presented for design-

Lug a filter to improve the computational efficiency

of a numerical scheme. For an explicit scheme, the

integration time step is increased, causing several
waves to become unstable. These waves are filtered

without disturbing the accuracy of the solution and

the accuracy of the remaining waves are controlled.

The scheme is applied to the solution of the Euler
equations by using the NPARC code.

Proccasor L Processor 2

Block Solver InterfaceSolver InterfaceSolver Block Sotver

Block{l) _ao_ (I) Imcrfacc(2) Block(2)
Arb(1) Arb(2)

Figure 1: Parallel execution with block and interface
solvers.

Introduction

For the solution of complex flow problems, imple-

mentation of a computational algorithm requires

several important choices. First, a computational
grid is generated which reflects the local complexity

of the flow with appropriate grid refinement. Then,
the computational scheme is adjusted for a_:curacy

and e_iciencyforthe.problem m hand "baaedon pre-

vionsexperience_The conten_ofnumerical viscosity

isusuallytestedand the time step of inte_ation is

prescribed for each problem. In this paper, the uti-
lization of digital filtering techniques is described for

treatment of such accuracy and efficiency problems.

The flow problem is defined in a block-structured
fashionJ ,_-The flow field is divided into sub-domaLus

called "blocks" which are connected at "interfaces."

The algorithm employed to calculate the flow field
inside each block is called the "block solver." The ac-

curacy, and efficiency of the numerical scheme is de-

fined locally for each block solver. The communica-
tion between the block solvers are handled by "inter-

face solvers." This approach is suitable for parallel

computing where available computer resources are

assigned to each block solver as required by the com-

plexity of the flow in that region. 3 Figure 1 shows a

schematic of the relationship between the block and

interface solvers in a parallel environment. The time

step in each block is denoted by Atb, the time step

for communication from the parent block to interface

is denoted by AtE, the time step for communication
from an interface to its parent block is denoted by

At_b and the time step for communication between
interfaces is given by Ati.

In this paper, the developed techniques were im-

plemented to explicitachemes. Explicitschemes are

known to have restrictionson the time step ofinte-

grationbased on the CFL stabilitycondition.As one

studiesthisconditioncarefully,itstatesthat the sys-

tem isstableforwaves of allpossiblefrequencieson

a givengrid.On the otherhand, itisknown thatthe

high frequencywaves are not accuratelyrepresented

by a given differencescheme. Thus, the CFL con-

ditionimpliesthat these waves willbe numerically

integratedeven though they may not be accurate.

In the developed scheme, the CFL conditionisre-

laxed.The time step isincreasedsuch that the sta-

bilityofonly certainlow frequency waves are main-

rained. The unstable high frequency waves are ill-

tered.As a resultofthisprocedure the e4_idencyof

the computations are increasedby obtainingstable

NPARC

CODE

GPAR

PVM

Figure 2: Parallelization with GPAR

solutions at higher time steps without losing accu-

racy.

The block-filtering scheme is defined for each indi-

vidual block. A spatial filter is employed inside each

block. This scheme replicates some of the functions

of multi-grid schemes. In this case, only a single

grid is utilized. Also, the choice of the filter is re-

lated quantitatively to the spectral contents of the

solution. At each time step, after the filtering oper-

ation, there is a mismatch at the interfaces for the

boundary conditions for each block. This error is

also filtered by using a previously developed tempo-

ral interface filter. 4 Since needs for accuracy will be

different for steady state versus time-accurate solu-

tions one can filter more wav_ and use a larger time

step fftime-accuracy isof no concern.

The NPARC code _ was utilized to demonstrate

the developed filteringprocedure. This code was

parallelized by using some paxallelization tools

(GPAR, DLB) developed previously. 1'2 PVM e is

used as a low level message passing library to han-

dle parallel communication and execution. Fig-

ure 2 illustrates the relationship between the three

components of the parallelized application program.

An explicit three-stage Runge-Kutta time stepping
scheme was selected. For the chosen two- and three-

dimensional inlet problems the CFL limit of C =

1.0 was observed for both steady and time-accurate

problems. This limit was then extended to higher

Courant numbers by using the developed filtering

scheme.

_E

0.5

-0.5

-1

-1

/: ('/ i -

.0.5 0 05
Real

IGI=I----

Figure 3a: Amplification factors for c---0.4, d=0.16

Accuracy and Stability of

Explicit Schemes

To describe the basics of the developed scheme, the

following one-dimensional convection-diffusion equa-

tion isconsidered first:

wt + uw, = o_w.. (1)

By using forward differencing in time, upwind and

central differencing in space, one can write the fol-

lowing difference equation:

w." w _ - 2w? + wT__+l-w?+u '- wT-1-a i+1
At nx (Az) 2

(2)
A yon Neumann type of analysis leads to the fop

lowing expression for the single-step amplification

factor:

W_ +1

= G = (1 -c- 2d+ (c+ 2d) cosS.- IcsinSz)

(3)

at and d = a_ and 9= is the phasewhere c = u

angle in space. The equation for G is that for an

ellipse centered at 1 - c - 2d with a major axis of

c + 2d and a minor axis of c when drawn on the

complex plane. Figures 3a and 3b show a sketch of

G for two combinations of c and d. 7 The scheme is

stable for the first case. The value of 9_ for which

the scheme becomes unstable is appruximately 120

degrees for the second case.

We can see that G is stable for all phase angles

8z when the ellipse lies inside the unit circle on the

complex plane. The three stability conditions are:

1. c+2d < 1 ; implies that the center of the ellipse

will lie on the positive real axis.

_s

2

1.5

1

0.5

0

-0.5

-1

-1.5

-2

/

-2 -1.5 -1 -0.5 0 05 1 15
Real

IG,I=1 --
exact ----

n_l

1

0.9
u.

0.8

0.7

; .6

_ o5

_ 0.4
C

_, 03

0.2
0

i i i i i

4 6 8 10 12 14 16 18 20
Wave number

numen=zl --

Figure 3b: Amplification factors for c=0.8, d=0.32 Figure 4a_ Spectraldecomposition of amplification

factorsforc=0.4, d=0.16

2. c < 1 ;impliesthat the minor axisofthe ellipse
islessthan the radiusofthe unitcircle.

3. c2 < c + 2d ; implies that the curvature of the

ellipse is smaller than the curvature of the unit
circle close to 0= = 0.

The first condition is the most restrictive one. The

last condition is also important since it directly

affects the stability of the low frequency waves (

0= _ 0). As can be seen from Figure 3b, violat-

ing the first 2 conditions allows the ellipse to grow

on the negative real axis as well as the imaginary
axis. For the second case, only waves up to a value

of 0= _ 120 degrees are stable, for other values of

0=, the amplification factor G lies outside the unit

circle and hence grow with every time-step. If one

can filter these high frequency waves, it is possible to
obtain stable and accurate solutions at such Courant

numbers. However, it is important to preserve the

low-frequency waves, and hence the last condition

must always be satisfied.

If one considers the accuracy of the convection-

diffusion equation Eq. (2), the spectrum of the dif-

ferential equation in Eq. (2) can be compared to

that of the difference equation as follows:

G_=_ = e -_''2At (cos(_=uAt) - I _xn(w=uAt))
(4)

Gnu_ = (1 - c - 2d + (c + 2d) cos 0z - Ic sin 0_) (5)

where, wz = 0_ / Ax.

In Figures 3a and 3b the plus (+) symbols denote the

amplification factors corresponding to wavelengths

of 2Az, 4Ax, and 8Ax. Since the difference equa-

tion has no imaginary components, the amplification

factor is symmetric about the real axis. As can be

2

1.8

u. 1.6

1.4

1.2

10.8

0.6
• Q4
c

,_ 02
:S

0

¸.../

/

/
/

2 4 6 8 10 12 14 16 18 20
Wave nund_r

exact --

numercal --

Figure 4b: Spectral decomposition of amplification
factors for c=0.8, d=0.32

seen from the figures,even for low Courant num-

bers,accuracy of high frequencycomponents ofthe

solutionisnot very high. Figures4a and 4b show

the magnitudes ofthe amplificationfactorsfor both

cases.Even though the magnitude responses ofthe

exact and numerical schemes are dose, theirphase

isdifferenteven forlow frequencywaves.

Also,steady statesolutionsofthe two equations

can be compared in a similarmanner. Figure 5

shows the steady statesolutionofthe convectiondif-

fusionequation forboundary conditions0 and 1 at

each end of a domain of length 1.0,as computed

from Eqs. (1)and (2).The spectraldecomposition

of the error is shown in Figure 6. The accuracy of

the steady state solution is also dominated by the

low frequency waves. A similar spectral decom-

position of the three-stage Runge-Kutta scheme for

the one-dimensional, inviscid, convection equation,

x

I

0.8

0.6

0.4

O2

0
0

nurnencal

X"_

.X i

2 4 6 8 10
X

12

¢=

_E

2

1.5

I

0.5

0

-0.5

-I

-1.5

\
\.,

-2 / i , = ,

-2 -15-1 -0.5 0 0.5 1
Real(G)

1.5 2

Figure 7a: Spectral decomposition of the amplifica-
tion factor of 3-stage R-K scheme

Figure 5: Spatial exact and numerical solutions

r=h
e=

E

8O

6O

40

20

0

-20

-.40

-6O

-8O
-25

\Ei

El"
/

i

i

-20 -15 -10 -5 0 5
Real(G)

IGI=I
C=1
C=3 ----*- -
C--6

0.04

==
. O.O35

oc 0.03

e-® 0.025

g
u. O,Q2

o

0.015

o o_

0005

\

\
\

2 3 4 5 6
Wave number

Figure 6: Spectral decomposition of error

Figure To: Spectral decomposition of the ampLifica-

tion factor of 3-stage R-K scheme

(a = 0), as obtained through a yon Neumann sta-
bility analysis, is shown in Figure 7a for di_erent
Courant numbers. The amplification factor for the

exact solutionforthe convectionequation isthe unit

circle.For C=1, the scheme isstablefor allwaves,

the numerical errors are maximum for waves of 4Az

or a phase angle of 90 degrees. This scheme is time
accurate for the low frequencies. For high Courant

numbers, the scheme is stable for only a range of

low frequencies. For C = 6, the magnification factor

increases considerably as shown in Figure To. Here

the objective is to filter such high frequency compo-
nents of this solution and obtain stable results.

4

4

O

o 3
Q

&2

0
0

J

5 10 15 20
Wave number

IGl=l
C=-1
C=3 - +--.
C---6 --,-]_

Figure 7c: Spectraldecompomtion of the amplifica-

tionfactorof 3-stageR-K scheme

Numerical Integration of

Euler Equations

The derivationswillbe restrictedto the axisym-

metric form of Euler equations, dropping the viscous
terms of the Navier-Stokes equations for brevity.

_- _-;+ N +H =0 (6)

Q j_=l

H 1

= .-] ; g = y(,_,E+,l,F)

Q_= pu ; H= 1_ ptm
It P_+P

pe (pet + P)v

(7)

(8)

E= Pu2+P ; F= pvu
guy pv= + P (9)

(pet + P)u (pe_ + P)v

where J is the Jacobian of coordinate transforma-

tion. The three-stage Runge Kutta time-stepping
scheme is written as follows:

OQi,j _ RttS (10)
Ot

- F"J-' - F'"+_- H,,jRtIS = Ei-_'J -Ei+,j +
2A_ 2Aq

(11)

O,a(1) = O_a(n)+ o.6_t _s(n)

Q,j(2) = Qij(n) + 0.6At RttS(1) (12)

O,j(. + 1) = O_a(-) + _t _s(2)

where central discretization is used for evaluating

the source term in Equation (11) for each coordinate
direction and n denotes the time level or iteration

level.

Stability of the Runge-Kutta Scheme

For the purposes of a Unearized stability analysis,

the inviscid fluxes along the coordinate directions are

transformed according to the following relationships:

OE O_ aO aO

o# aS' a_ -
-N=B--_

(13)

(14)

For the purposes ofthe stabilityanalysis, the source

term /I_j is neglected. Expanding the solutionin

a Fourierseriesassuming periodicboundary condi-

tionsyields:

N(-I N,_-I

O,j = Z Z Q:m(t)eleW'ezm""J (15)
_o m---0

where Q is the amplitude of a particular harmonic

and N_, N, are the number of grid points in the
and _/coordinate directions respectively. Consider-

ing the stability of a single harmonic, the amplifi-
cation matrix G of the harmonic can be obtained

as:

(_n+l

C(e_,e,,) - (#.

= (Y + AtN + 0.6AtaN2 + 0.36AtSN a)

N = -I (A" sin(O¢) + B" sin(0.)) (16)

where, Y is the identity matrix, and 0_ and 0, are

the spatial phase angles in the _ and _/coordinate
directions respectively. Matrix N is a function of

the local Mach number, flow direction and the grid
dimensions.

Design of a Block Filter

If one assumes that the numerical integration of

the Euler equations with a Courant number C =

1for thethree-stage Runge-Kutta scheme provides

an accurate and stable solution, the objectives in

designing a filter can be summa_ed as follows:

• accuracy problem: the filtershould provide ac-

curatesolutionforthe low frequency waves for

C:p,p>l.

• stability problem: the filter should stabilize or

in this ca_e eliminate the umctable, high fre-

quency portion of the solution with Courant

number C = p, with p > 1. These objectives

are achieved by filtering the residual vector af-

ter each numerical integration step.

Accuracy Problem

The accuracy problem istreatedby comparing the

two solutionsobtained by di_erenttime steps.The

dmnge in a specific harmonic of the residual, when

integrated by C = 1 and after p time steps, can be
written as follows:

c=_ ((Gc=,)" - Y) d_" (17)

On the other hand, the change in a harmonic of

residuals after one integration time step with C -- p,
is equal to,

O"+P - ¢" = (Cc=p - Y) Q" (18)
C=p

We can definea filterwhich willequate these two
residuals.

/_.+.
) - O" (19)= "_C= I

Thus, by multiplyingthe C = p residualswith this

filter,we can obtainaccuratesolutionsforallwaves

ifsuch a filtercan be designed.

The filtermatrix isdefined by the followingex-

pression:

F = ((Gc=_)" - Y) • (Cc=p - Y)-_

= F(M, _b,8_, 0,_) (20)

The filter matrix F is a 4_x4 complex matrix whose

dements are a function of the Mach number M, flow

angle with respect to the coordinate directions (_, t/)

and the phase angles in each coordinate direction 0_

and 0,. It should be noted that, the solution ¢3"+p
"_C=p

obtained with Courant number p is unstable, and

the filtering operation should in theory produce a

stable solution for all frequencies.

Stability Problem

For a linearproblem away from boundaries,the ill-

ter,as definedin Eq. (20),may provide a stable

and accurate computation of all waves. However,

for non-linear problems, it becomes very difqcult

to design a filter which can stabilize all low and
high frequencywaves and stillprovideaccuracy.For

C = 6, Figure 7b illustratesthat certainwaves be-

come highlyunstable.In thiscase,ratherthan ob-

tainingan accurate solution for these waves, a more

practical approach of filtering these waves is pro-

posed. The filter matrix F is further modified by

multiplying it with a low pass filter which damps

out the high frequency components of the solution

including all unstable waves. The filter is designed
to provide an accurate solution only for the remain-

ing low frequency waves.

An eigenvalue-eigenvector decomposition of the
amplification matrix G yields the following CFL con-

dition for the spectral radius of G:

{A,,mx(G){ < 1 (21)

c_._= _t (_sin(e_)+ v sin(e.)

+a_/(_ -t-_)sin(0_)+ (rr_= + Tf_)sin(0,)) < 1.8

(22)

where, U --_=u ÷ _vv,V = T/=u+ %v and a isthe

speed of sound.

If N¢ and Nn are the total number of grid points
in the _ and t/ directions respectively, the number

of low frequency waves to keep, n¢ and n. are cho-

sen such that for 8¢ = 2Trite, and O, : 2x-_, the
above stability condition is satisfied. The final filter
is defined as:

F" = _F, (23)

F_p = flY (24)

where, IIisunity forall0¢,es forwhich the scheme

isstable,and zero forallother waves for _n+p
_C=p"

FFT Implementation

After approximately every n (e.g. n=100), computa-

tional steps, the filter matrix F(O_, 0,, M, _) is eval-
uated for each block by computing an average Mach

number and flow angle _b in the block. The numer-

ical implementation of the filter matrix is of size
F(4, 4, jmax, kmax) where jma= and kmaz are the

total number of grid points in the _ and t/coordinate

I II I II I I

tJ.

7O

65

6O

55

5O

45

4O

35

3O

25

2O

/_' ,<

_5deg
3Oc_ -_
45 deg --*

,_ 2(#

i L

0.5 1 15 2
Mactl Ni.w¢_

25

• , ,:i_

0.4 I. / .:j-:',.-_]i;;i

':-- 7='-_-:_"1

-4

Figure 8: Matrix norm of F for various Mach num-

bers and flow angles

directions respectively. The two-dimensional FFT

of the unstable residual obtained after a complete

Runge-Kutta cycle with a Courant number of p > 1

is computed using a separate subroutine, s Next a

matrix vector product of the unstable residual with
the filter matrix is carried out for each phase angle

8£ and 8,. Finally, the complex coefficients obtained

are damped further for the values of 8q and 8n by
multiplyingthosecoefficientswith a very small num-
ber (_ 0.01).The finalcoefficientsaxe then used for

the inverseFFT to yieldthe filteredresidualinthe

spatialdomain. The filteredresidualisthen added

to the solutionQ" to yieldthe stableand accurate

solutionfor _n+p Figure 8 shows the computed_C=p °

matrix norm fora 14x21 grid block for a range of

Mach numbers between 0.1 to 2.5 and a range of

flow angles0 < _ < v/2. From thisfigureitcan be
seen that the filtermatrix ismore sensitivefor su-

personicMach numbers compared to subsonic Mach

numbers. A _equency response of the _ dement

for_b= 10 degreesand forthe same 14x21 gridblock

isshown inFigure9. As can be seen from thisfigure,

high frequency _raves are filtered ouz.

Interface Filtering In Time

During the parallel computation of the flow problem,

the difference equation is integrated in time for all

the grid points of each blockf1,3 The solution values

at the interfaces are held fixed during a Runge-Kutta

cycle, and information is exchanged after proceeding

one time-step. For small Courant numbers C _ 1,

this freezing of boundary conditions at the interfaces

produces negligible oscillations in the solution in-

Figure 9: Magnitude of F_44 for _b -- 10 degrees

U>O

Figure 10: Feedback Model

side the blocks.However, for largerCourant num-

bers,e.g. 3 and 6, these oscillationsare reinforced

by a feedback system originatingfrom the Runge-

Kutta scheme applied at the boundary pointsfl Also,

one of the assumptions of the block filteringproce-

dure isthat the solutioninsidethe block isperi-

odic. The Fourierdecomposition isinaccuratenear

the boundaries if the non-periodicityisstrong,which
produces discontinuitiesin the residualsacrossthe

interfaceswhen informationisexchanged. As dis-

cussedpreviously,_ an errorisintroduced at the in-

terfaceswhich then forms a negative feedback sys-

tem. As an example, considerthe pair of blocks in

Figure 10. If the semi-discretized ELder equations

can be expressed as follows:

-- = A. Q (25)
dt

For a linearized operator A-, the error obeys the

same difference equation as the solution. Let us call

the error introduced due to the non-periodicity of
the solution across the interfaces as X.

dX
m = A-X (26)
d2

If X1 (n) is an error in the boundary condition, first
introduced at a time-step rt, at point 1, this error

will propagate upstream in Block I to point 2 at

the next communication interval. Assume it prop-

agates to point 2 to become X2(n + 1) before the

next exchange. When communication occurs at this
instant, Xs(n + 1) is replaced by X2(n + 1). The

error at point 3 propagates to point 4 to become

X4(n + 2).

x_(,+l) = /I.x1(,_) ,

X3Cn+l) = X2(n+l) ,

x4(n+2) = h-X3(n+l)

X_(n+2) = x4(n+2) ,

x,(. + 2) = /1. h" xl(.)

(27)

where f1"and f2"areoperatorsrepresentingthe inte-

grationprocessinsidethe block.The lastexpression

inequation (27)providesa relationshipbetween the

error introduced at time-step n and n + 2. It was

shown 4 that during the numerical integration, the

introduced error leads to a negative feedback which

can be approximated with the following relationship:

I_" I_" _ -1 (28)

Based on this approximation, one can describe the

oscillationsin time at a boundary point by the fol-

lowing relationship:

x_ (n + 2) = -x_(n) (20)

Taking a Z-Transform of the above relation leads to:

z_xcz) = -xcz),

z 2 = -1 (30)

The solution of the above equation provides 20t --
2mTr +Tr, m : 0,1,2,3 where z = re le'. The

fundamental solution is 20t = _r, corresponding to

m : 0. Hence the fundamental frequency of oscilla-

tions corresponds to a period of T : 4At. The filter

developed previonsly 4 can thus be applied to this

signal to yield zero gain for this wavelength. The in-
terface filter is developed for an interval correspond-

ing to p where C = p > 1 is the Courant number
used inside the blocks. The solution at the interfaces

is sampled every communication step, which is equal

to p, and filtered based on averaging of the solution
stored for the current communication step and the

previous 3 communication steps. The filter is of type
FIR and its Z-transform looks like:

B(z) =

Z-t + 2z -2 + 3z -3 + 4z -4 + 3z -5 + 2z -e + z -7

16
(31)

Test Cases

The following two test cases were considered:

I. An axisymmetric mixed-compression VDC

(VariableDiameter Centerbody) inletis con-
sideredunder a subsonic inflowof M=0.3 and

a subsoniccompressor face outflowMach num-

ber M=0.4. The inlet geometry supplied ° was

modified by increasing the throat area to per-

mit subsonic unchoked flow throughout the in-
let. The 2D version of the NPARC code has an

option to handle axisymmetric flow also. The

reference inlet pressure is 117.8 lb/ft 2, and the

reference inlet temperature is 395 Rankine. The

cowl-tip radius of the inlet, Rc=18.61 inches is

used to non-dimensionalize the lengths. The

grid for this inlet consists of approximately 4500
nodes, and is divided into 15 blocks, all of ap-

prox_ately equal size as shown in Figure 11.

First a s_ady-state solution is sought using lo-

cal time-stepping for all nodes in each block
with a uniform Courant number of 1.0 for all

nodes. Then a Courant number of 3.0 is used

for all nodes and block and interface filtering

isswitched on to obtain a stablesteady state

solution.

2. The same geometry as defined in test case 1

ischosen,except the grid isrefined3 times in

the flow direction.Refined grid increasesthe

number ofthe stablewaves and allowsaccurate

solutionseven when the Courant number isin-

creasedto6. The resultingrefinedgridisshown

inFigure12. Also,the inletMach number isin-
creasedto0.5and the exitMach number isfixed

at 0.6.This was done to study the behavior of

the filterfor a differentMach number and also

to achieveconvergence to steady state in the

same number of iterationsas that for testcase

1. The same blockingstrategyas in testcase 1

was used.

• _ 2 $ 4 $

Figure II: Grid foraxisymmetric engine inletwith

15 blocks (testcase i)

Figure 12: Grid foraxisymmetric engine inletwith

15 blocks (testcase 2)

Results

The test cases were run on an IBM SP2 parallel

supercomputer locatedin Poughkeepsie, New York.

The communication subsystem used by the SP2 is

HPN (High Performance Network) using a switched

Fast Ethernet. Up to 15 ofthe available16 proces-

sorson the SP2 were used forthe currentstudy.

As described in test case 1, first a steady state so-
lution is obtained for the prescribed geometry and

flow conditions. Next, the Courant number was in-
creased to 3.0 for all nodes in each block. A filter

matrix as definedinEq. (20) was recalculatedev-

ery 100 s_eps. Only 4 out of 21 waves were kept as

defined in Eq. (24). Also an interface filter designed
for a Courant number of 3.0 was used to damp oscil-
lations near the boundaries. The solutions obtained

are plotted in the form of the nondimensional density

variation at the midpoint of each block. Figures 13-

14 show a comparison of the solution obtained with
the two Courant numbers. The iteration number

for the case with Courant number 3.0 in the figures
have been normalized to those fur Courant number

1.0., i.e., the iteration number for a Courant num-

ber of 3.0 is scaled by 3. The solution components

because they have been damped out by the block

and interface filter. However, the final steady state
solution reached with both Courant numbers is the

same, and hence it is not necessary to integrate the

high frequency components if only a steady state so-

lution is desired. The above procedure is similar to

a multigrid scheme where high frequency waves are

filtered by using a coarse grid. In this case only a
single grid is utilized. The number of waves to be

kept is determined based on stability and accuracy

conditions. The basic Runge-Kutta algorithm is not

modified; only a filtering algorithm is added to mod-
i_fy the solution at each time-step. Finally, for each

block a different filter is designed based on local flow

conditions and grid size.

The Courant number is increased to 6.0 as de-

scribed in test case 2 with the refined grid. Block

and interface filtering is switched on to damp the

high frequency oscillations (for wave numbers grater

than 4), arising from the instability of the explicit
Runge-Kutta scheme for this Courant number. The

solution is again plotted in the form of the nondi-

mensional density variation with iteration number
normalized to a Courant number of 1.0. From Fig-
ures 15-16 it can be seen that as in the results for

test case 1, the high frequency components are ab-
sent from the solution for C=6.0. However, the

steady state solution obtained with a Courant hum-

1 01

1.00e

1006

1.Q04

r_ 1.002

_ 0._
o

7o 0.994

0992

0.99

0

Figure 13:
7-9

C,,L3. E_O_ 7 --

G-1, Bloc_ 7 --
C,--_, Bloc_ 8
C,=I, Bloc_ 8 --

. C=3, Bgoc_ g
,i / _.t, ekx_ 9

i 1.04

1.02

I

0.98

0.96

Z 0.94

0.9_

100 200 300 400 500 600 700 800
0.9

_tera.bon Number / 10 0

Density variation at midpoint of blocks

Bkx=7c-,--
::_ s _. BlockaC-6 -----

.,._'_ i s_,g.c,-_

i i t i l i l

tO0 2O0 300 4O0 5O0 60O 7O0

Itefa_on number / I0

Figure 15: Density variationat midpoint of blocks

7-9

1.01

1008

I _ _, Bo= 13,C=1
1.004 1.1 F :, / l_,, .._, Block 14,_

,o.L

0.9940"9960"998 _ 1.021"04__!i 1_'''''_ "_

0.992 Z 1 ,I _£,_

0.!!6

Figure 14: Density variation at midpoint of blocks
13-15

bet of 6.0 is the same as the steady statesolution

obtained with a Courant number of 1.0.

Finally,to provide an idea of the expected im-

provements in the parallelspeedup and e_ciency

from the above filteringtechniques,Figures 17 and

18 show the speedup and e_ciency obtained forthe

two testcaseswith the IBM SP2 parallelsupercom-

purer. Speedup and e_ciency for these cases are

definedas follows:

Speedup = Elapsed Time with C --1.0on 1 Processor

Figure 16:
13-15

0 100 200 300 4OO ,500 600 70O 8OO
tlera._on number/10

35

3O

25

Density variation at midpoint of blocks

c=f --+-:i
C=3 +] _._-_. -'_
C--6 ---_ I '

15 _.. _.___
• -'-_--.._ __"

10

Elapsed Time on n Processors32)_ * _I _-_--__

Efficiency- Speedup (33) 0 0 2 4 6 8 10 12 14

n Number of Processom
16

From Figures 17 and 18 it can be seen that very

high parallel speedup and efficiency can be achieved

with the implementation of the filtering techniques,

Figure 17: Speedup for test cases 1 and 2

10

Q

3
_J

45

35

3

2.5 _ K

15 v.

0.5 _

0 2 4 6 8 10 12 14 16
Ntrne_ (W_

Figure 18: Efficiency for test cases 1 and 2

respectively. An effective speedup of 2.2 and 4.3 is

achieved on the single processor case with Courant

numbers of 3 and 6, respectively. Hence the effi-

ciency of the filtering procedure is estimated to be
about 70%. It is conceivable that with more effi-

cient FFT algorithms or with grid dimensions which

are a power of 2, this overhead may be reduced con-

siderably yielding even greater parallel speedup and

efficiency.

Conclusions

The proposed filtering techniques are aimed at im-
proving the efficiency of a numerical scheme by se-

lecting the information to be computed. The aim

is to calculate the accurate portion of the solution
and filter the inaccurate part which in fact increases

the computational cost. The design of the filter can
be automated based on the calculated initial results.

The scheme provides the same benefits of the muJti-

grid technique, yet it is adaptive to the problem and
works on a single grid. One can design filters for

both implicit and explicit schemes without modif T-

ing the original algorithm.

.

2°

.

.

.

°

°

°

.

References

Almy, H.U., Blech, R.A., Ecer, A., Ercoskun,

D., Kemle, B., Quealy, A., and W'ffiiams, A.,

"A Database Management System for Parallel

Processing of CFD Algorithms," ParaJleJ CFD

'9_, F__ted by Peiz, A.B., et al., Elsevier, Am-

sterdam, 1993, pp. 9-23.

Chiea, Y.P., Ecer, A., Akay, H.U., Carpenter,

F., and Blech, R.A., "Dynamic Load Balancing

on a Network of Workstations for Solving Com-

putational Fluid Dynamics Problems," Com-

guter Methods in Applied Mechanics and En-

gineering, vol. 119, 1994, pp. 17-33.

Gopalaswamy, N., Al_y, H.U., Ecer, A., and

Chien, Y.P., "Parallelization and Dynamic

Load Balancing of NPARC Codes," AIAA Pa-

per No. 96-3302, July 1-3, Lake Buena V_mCa,
FL, 1996.

Gopalaawamy N., Ecer A., A.kay H. U., and

Chien Y.P., "Efficient Parallel Communication

Schemes for Explicit Solvers of NPARC Codes,"

AIAA Paper No. 97-0027, Reno, January 1997.

Cooper, G.K., and Sirbaugh, J.tL, "The PARC

Code: Theory and Usage," Arnold Engineering
Development Center, TR-89-15, 1989.

Geist, G.A., Beguelin, A.L., Dongarra, J.J.,
Jiang, W., Manchek, It-, and Sunderam, V.,

"PVM 3 User's Guide and Reference Manual,"

Oak Ridge National Laboratory ORNL/TM-
17187, 1993.

Roache, P.J., "Computational Fluid Dynam-

ics," Hermosa Publishers, Albuquerque, New
Mexico, 1976.

Singleton, I_C., "Multivariate Complex Fast

Fourier Transform," Fortran66 Source from

ht'tp://www.netlib.org/go/fft.f, 1968.

Chung, J., "Numerical Solution of a Mixed

Compression Supersonic Inlet Flow," AIAA Pa-

per No. 94-0583, Reno, January 1994.

Acknowledgments

This researchwas funded by the NASA Lewis Re-

search Center under NAG3-1577. The authors ap-

preciatethe support provided by the Computational

TechnologiesBranch of NASA LeRC.

II

